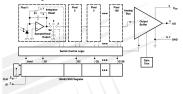
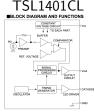
EECS 192: Mechatronics Design Lab Discussion 4: Project Proposal Feedback & Power Systems

GSI: Ducky Lin, Derek Chou


7 & 8 Feb 2017 (Week 4)

Project Proposal Feedback


10

- Beaglebone Blue pins
- Sensors
 - Line scan camera(s)
 - encoder/ back emf sensor
- Links
 - Line Scan Camera 1, Line Scan Camera 2
 - Optical encoder coming soon

Functional Block Diagram

Optical Encoder

Motor Drive

► G_en

- Needs 5V!!!!
- Pull down resistor (6.8k good)
- Shoot through protection
 - Logic protection circuit
 - Inverted PWM via code
- General
 - Heatsinks
 - Layout

Complimentary PWM

Switching Power Supply

DC-DC Converter

- ► 3 Cell LiPo Battery provides 11-12V
 - Good for motor, driver chip/ op amp
- ▶ We also need 5V?
 - Servo, optical encoder, camera, etc.
- How to consistently get 5V?
 - DC-DC converter!
 - Step Down
 - Buck Converter, Linear Regulator
 - Step Up
 - Boost Converter

Buck Converter

Buck Converter Circuit

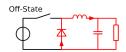
- DC-to-DC switching power supply generating output voltage lower than input
- Uses inductor as storage element
- Efficient, no losses in ideal case
 - Non-idealities: wire resistance, diode and transistor losses
- Capacitive filter to smooth output voltage

Buck Converter

Buck Converter Operation

Inductor charges when switch is closed

- Energy stored in inductor by magnetic field, current through inductor increases
- Diode does nothing here



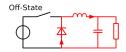
Switch Closed

Buck Converter Operation

Inductor charges when switch is closed

- Energy stored in inductor by magnetic field, current through inductor increases
- Diode does nothing here
- Inductor discharges when switch is open
 - Magnetic field dissipates, current through inductor decreases
 - Inductor voltage polarity reversed, generating voltage over input
 - Current flows through diode, output capacitor charged

Switch Open


Buck Converter Control

- If switch cycled fast enough, inductor does not fully discharge
- Output voltage is function of duty cycle D and efficiency η (link)

$$\blacktriangleright V_{out} = \eta D V_{in}$$

Inductor charging

Inductor discharging

- I've got a buck converter set up...
- A magic chip (LM2678) regulates the output to 5v

Duty cycle is adjusted to maintain voltage

• Remember:
$$V_{out} = \eta D V_{in}$$

What happens if I…

10/1

- I've got a buck converter set up...
- A magic chip (LM2678) regulates the output to 5v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \eta D V_{in}$
- What happens if I…
 - Increase the input voltage?

Buck Circuit

10/1

- I've got a buck converter set up...
- A magic chip (LM2678) regulates the output to 5v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \eta D V_{in}$
- What happens if I…
 - Increase the input voltage?
 - Duty cycle decreases, current decreases

Buck Circuit

- I've got a buck converter set up...
- A magic chip (LM2678) regulates the output to 5v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \eta D V_{in}$
- What happens if I…
 - Increase the input voltage?
 - Duty cycle decreases, current decreases
 - Decrease the input voltage?

Buck Circuit

10/1

- I've got a buck converter set up...
- A magic chip (LM2678) regulates the output to 5v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \eta D V_{in}$
- What happens if I…
 - Increase the input voltage?
 - Duty cycle decreases, current decreases
 - Decrease the input voltage?
 - Duty cycle increases, current increases

Buck Circuit

10/1

Related Topologies

Boost Converter Circuit (for your reference)

- DC-to-DC switching power supply generating output voltage *lower* than input
- Similar principle to buck converter

$$\blacktriangleright V_{out} = \frac{1}{1-D} V_{in}$$

Also exists buck-boost converters, where output can be greater than, equal to, or less than the input

Boost Converter

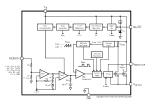
Questions?

got it?

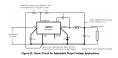
power supply pros, right?

Practical Application

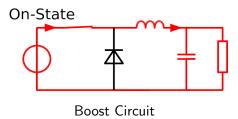
Basics


Automatic Feedback Control

- So, what is the switch-controlling magic?
- Feedback control: chip has logic to regulate the voltage on the feedback pin to an internal V_{FB} = 1.21V reference


$$\blacktriangleright V_{out} = V_{FB} \left(1 + \frac{R_2}{R_1} \right)$$

• $R_1 \approx 1 k \Omega$ recommended


LM2678 Block Diagram

Application circuit

Problematic?

What happens if the switch get stucks in the closed position?

Layout is Important!!!

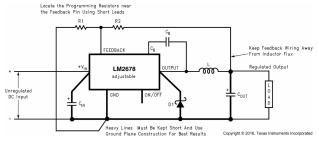


Figure 22. Basic Circuit for Adjustable Output Voltage Applications

Circuit

Layout Guidelines

- Switching power supplies are layout sensitive
 - Part placement and routing matters!
- ► Tips from the datasheet:
 - Keep diode and filter capacitor connections as short as possible
 - Minimize high frequency current path (switch, diode, capacitor)
- Read the datasheet!

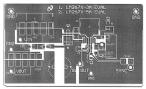
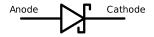


Figure 24. Top Layer Foil Pattern of Printed-Circuit Board

Recommended layout


(uses surface-mount components) source: datasheet, Linear Technology

Issues

Supporting Componenets

- Capacitors
 - Ceramic, film, polarized (tantalum, aluminum, etc.)...
- Diodes
 - Shottky
- Inductor
 - Toroid

Toroid Inductor

Summary

Summary

- Buck converters step down a DC voltage to a lower DC voltage
- LM2678 uses feedback control to do voltage regulation
- ► Follow recommended layout guidelines during PCB design
- Very difficult to make work on perfboard- just design it on the pcb.

Parts Handout Office hours for the rest of the section