EECS 192: Mechatronics Design Lab Discussion 6: Velocity Control

written by: Richard "Ducky" Lin Spring 2015

1 & 2 Mar 2017 (Week 6)

- Velocity Sensing
- Feedback Control
- Summary

Velocity Sensing

Brainstorm!

What are some ways to sense velocity?

pros and cons of your methods?

Optical Encoders

Optical encoders...

- Detects when sensor lit up
- Reflective sensor: light up codewheel, sensor detects reflection
- Photointerruptors: direct light beam from transmittor to detector, interrupt by object
- Simple designs vulnerable to ambient light

Hamamatsu S6986...

- High-pass filter and LED modulation for background light rejection
- Open-collector output

Hopefully a fairly readable schematic

Software Techniques

Two simple ways to measure speed:

Pulse width measurement

Measure width between transitions

Pulse counting

Count number of transitions in timespan

Advantages and disadvantages of both?

Hopefully a fairly readable schematic

5 / 11

Live Demo!

Low speed demo

see blinking LEDs!

High speed demo

what waveforms should you expect to see?

Issues

skipped pulses, inconsistent pulse lengths

What are some ways to deal with inconsistent pulse sizing / other issues?

pros and cons of your methods?

Ducky (UCB EECS)

Issues

Moving Average Filter

 Average pulse widths over a entire revolution

Hopefully a fairly readable schematic

Feedback Control

PID

Proportional Control

- Change output by p * (difference between sensor input and data)
- Very intuitive- part of almost every PID scheme.
- Integral Control
 - ► Change output by *i* * (integration of error over time)
 - Overcomes offset errors (example: friction)
- Derivative Control
 - ▶ Change output by *d* * (instantaneous derivative of the error)
 - Helps prevent oscillation (example: steering)
- Video about PID control on vehicle
 - https://www.youtube.com/watch?v=4Y7zG48uHRo
 - Video courtesy of MIT Aerospace Controls Lab

Summary

- Optical Encoders
- The way you process data affects how you acquire data. Be aware of the effects of errors/noise
- PID control overview