
Professor Fearing EECS192/Assignment #1 v1.00 Spring 2021
Due at beginning of class Tues Feb 23 in bcourses
(One assignment per team.)

The purpose of this assignment is to allow you to prototype track finding algorithms with a high level
language before implementing on the Huzzah32. You are free to use signal processing libraries, float-
ing point, etc. for initial prototyping. However, remember that your line finding algorithm will need
to work in real-time on Huzzah32. The course instructors have not done any timing of signal process-
ing on Huzzah32. This has note been tested by staff, here is a port of parts of OpenCV to the ESP32:
https://github.com/joachimBurket/esp32-opencv which gives timing and memory usage. You will want
to do some timing tests (and memory use) before planning a steering control loop around your prototype
line detection algorithm.

Typical strategies to use for finding the track include:

1. Frame subtraction and peak detection

2. smoothing followed by gradient detection (e.g. difference of Gaussians approximation to the Laplacian)

3. curve fitting, e.g. cubic spline or tanh−1.

A set of line scan data from EECS192 2016 Team 1: Fast and Curious is provided on Piazza for EE192
under “Resources”, natcar2016 team1.csv. A Python template is provided linescanplotsHW1-3.7.py

(Python 3) which will read the csv file (can easily be modified to read telemetry file by adding extra
columns) and plot line camera data and velocity. The actual car run can be seen at
https://www.youtube.com/watch?v=_AMs9iixp5M. A bit more than a complete lap is given in data, as you
can see the steps right after the start line. This data has been pre-processed to control illumination. Note
that the time sampling is not uniform as darker areas use longer exposure (this is not necessarily the best
strategy). Also, the velocity data is quite noisy.

Complete the function find track(linescans) which takes as input n frames of linescans of 128 values
in the range 0...255 and returns:

[6 pts] a) track center list which is a length n list of the index in the range 0...127 corresponding to
the center of the track in each frame. (np.argmax() is used as a starting point, but it is not at all robust.)

[2 pts] b) track found list which is a length n list of {10,100} , where level 100=True and level 10 =
False if the track is visible for a particular frame.

[2 pts] c) Cross found list which is a length n list of {10,100}, True where 100=True and 10 = False
if a crossing is present for a particular frame.

Upload your completed Python code to bcourses, as well as .png plot of track center, track found,
cross found as provided in linescanplotsHW1-3.7.py. Note average time per line scan. Your python
function will be tested against another data set taken under similar conditions on a similar track.

The line scan data should be interpreted as given in the following table. For example, around scan 380,
the track is out of frame, so track found would be False.

Input Input output output
track? crossing? track found cross found

F F F F
F T F T
T F T F
T T T T

https://www.youtube.com/watch?v=_AMs9iixp5M

