Track Memorization

EE192 Spring 2019 Lab Lecture 13: April 24, 25 Justin Yim

Track Memorization

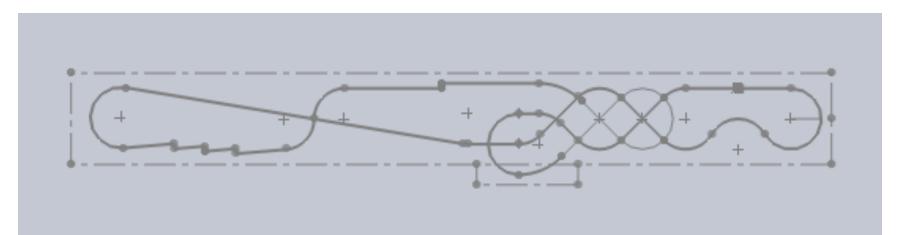
- Objective: use prior knowledge to run the track faster on the second lap
 - "Anticipate" turns
 - Optimize path
- Two related problems:
 - Mapping: where is the track?
 - Localization: where am I?
 - Note: we do not need Simultaneous Localization and Mapping (SLAM); we will do one, then the other

Track Memorization

- Three steps:
 - 1. **Map** the track
 - 2. **Plan** a trajectory for lap two
 - 3. Follow the planned trajectory with **localization** and control (you already have control)

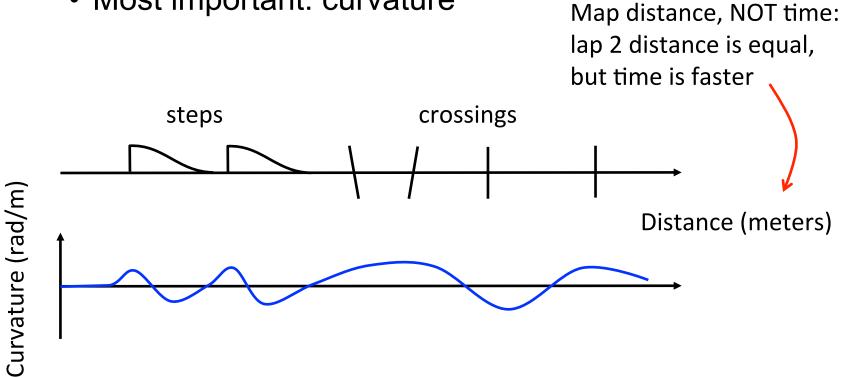
- Objective: record the track layout
- During mapping phase, assume the car's position estimate is perfect to record location of track features
- Use wheel odometry, integrated velocity, etc. for distance
 - Go slow so the car doesn't slip or behave oddly

- Several possible parameterizations:
 - 2D track path (like a map)
 - con: complex loop closures



Note: NATCAR explicitly bans pre-coding the track and allows memorizing it

- Several possible parameterizations:
 - 1D list of track features (like driving directions)
 - Steps, heading, etc.
 - Most important: curvature



- How to store the map?
- A 1D map of curvature could be stored simply in a very long array of ints
 - I'm using a 20,000 element array of ints recording curvature in centi-radians/meter every 10 cm

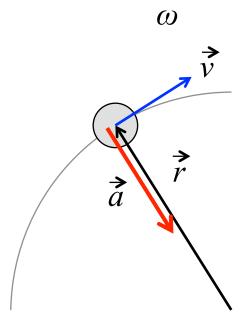
- Recall the friction performance limits
- The car can corner only so fast and accelerate/brake only so fast
- Back of the envelope limits:

$$-a_r = v^2/r$$

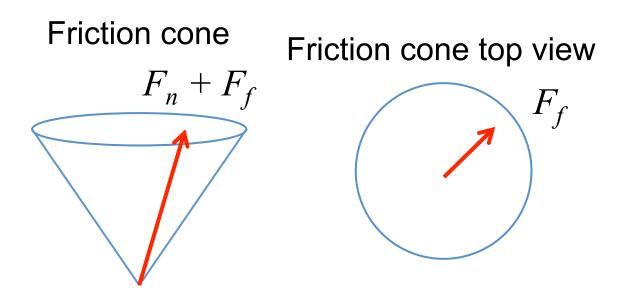
$$-a_\theta = dv/dt$$

$$-\vec{a} = ||a_r + a_\theta||_2 \le \mu g$$

- Car dynamics caveats:
 - Lateral and longitudinal weight shift
 - More complex tire dynamics

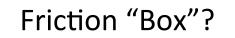


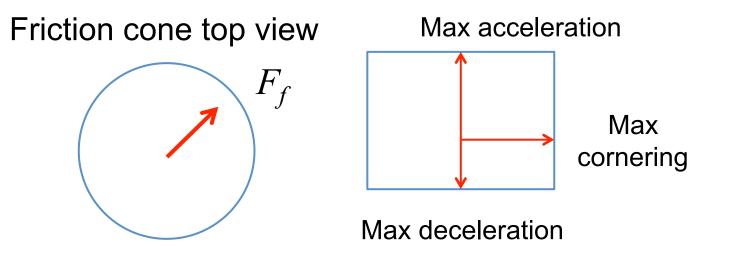
- Optimal trajectory operates the car near the friction limit as much as possible
 - Take corners at maximum cornering speed
 - Maximum acceleration/braking on the straightaways
- How do we come up with a good velocity plan?

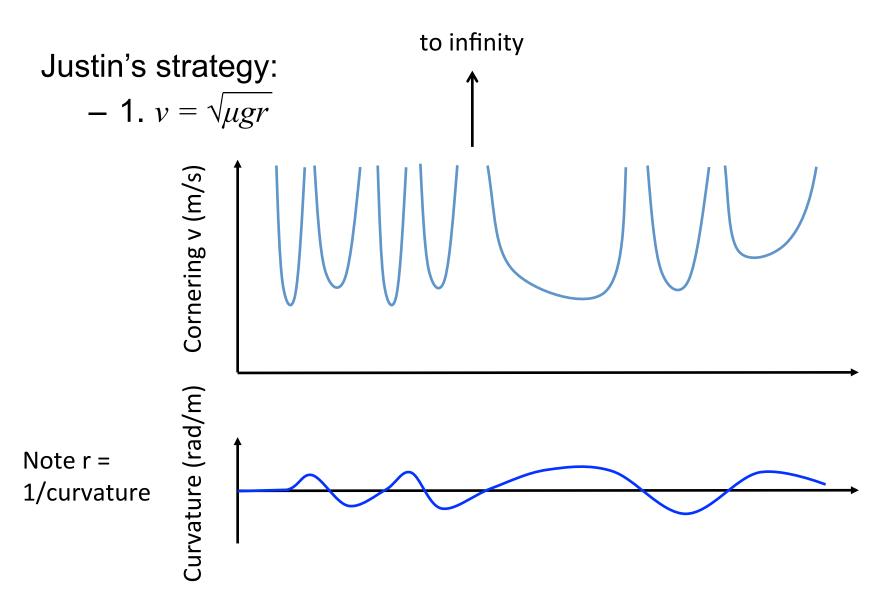


Justin's strategy: simplifying assumptions:

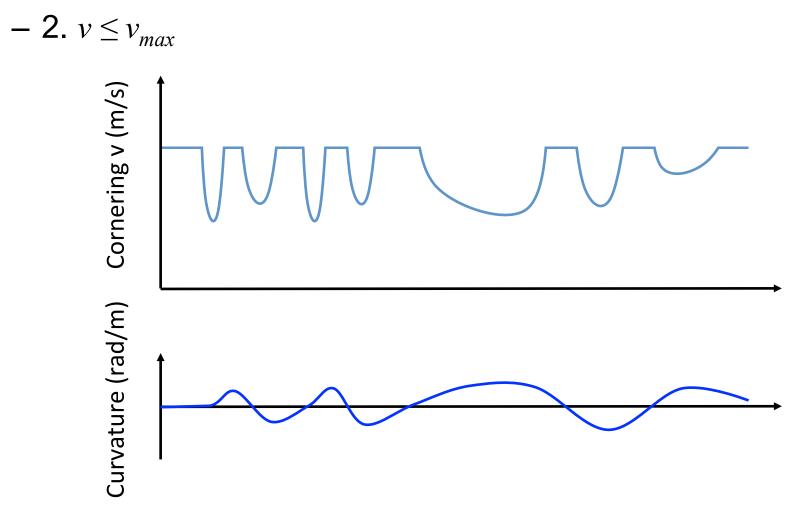
- 1. Ignore coupling between a_r and a_{θ}
- 2. Top speed v_{max}
- 3. Max acceleration a_{max}
- 4. Max braking a_{min}



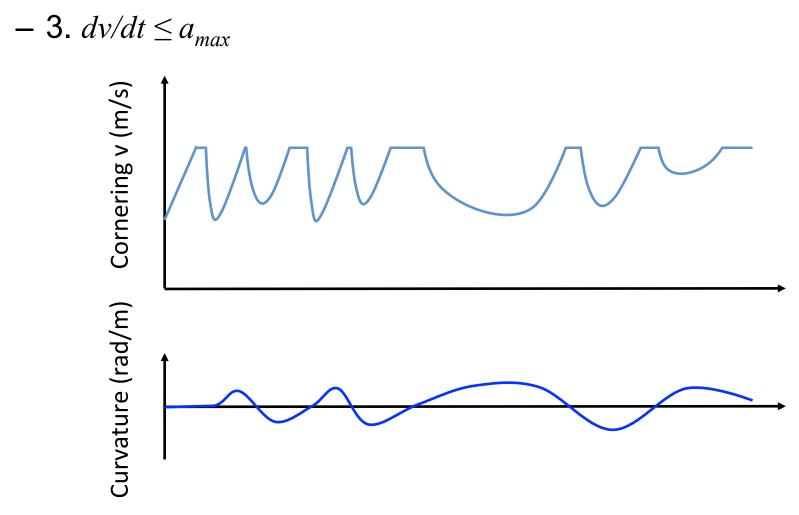




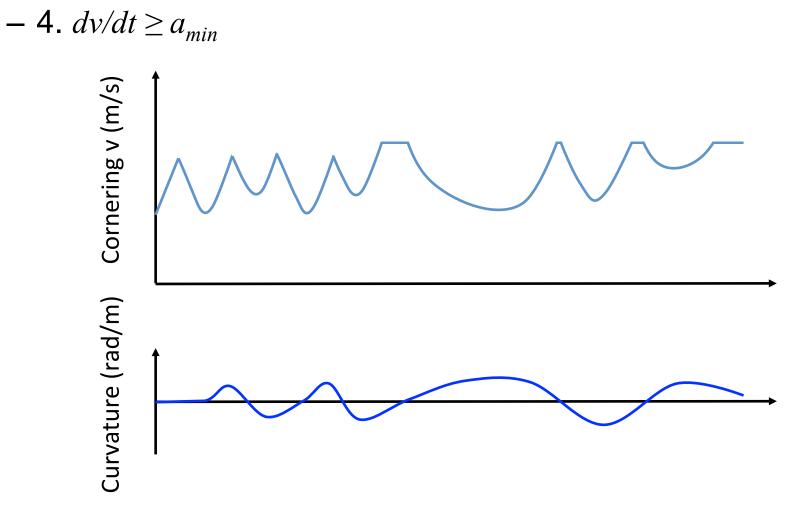
Justin's strategy:



Justin's strategy:

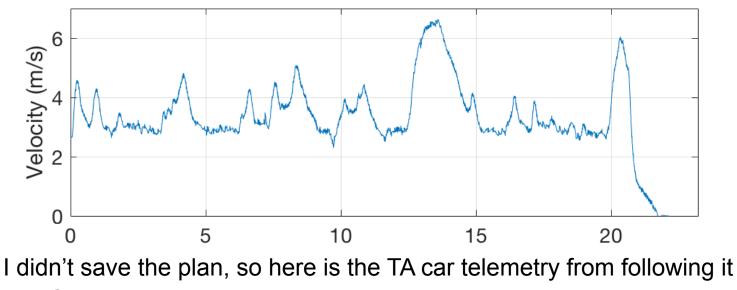


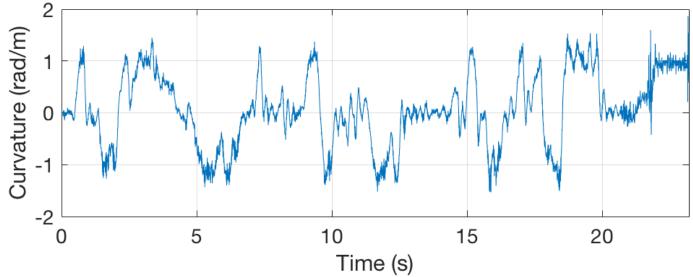
Justin's strategy:



Justin's strategy can be computed in two for loops: one forwards and one backwards

- Forwards: set $v = \sqrt{\mu gr}$, $v \le v_{max}$, $dv/dt \le a_{max}$
- Backwards: set $dv/dt \ge a_{min}$

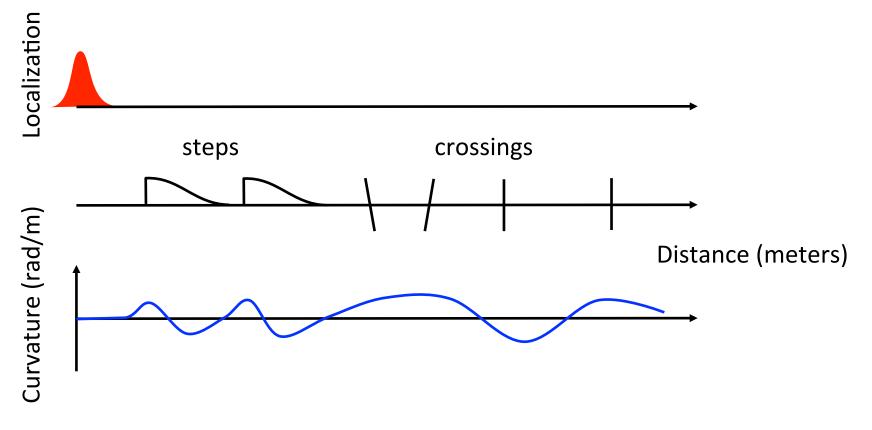




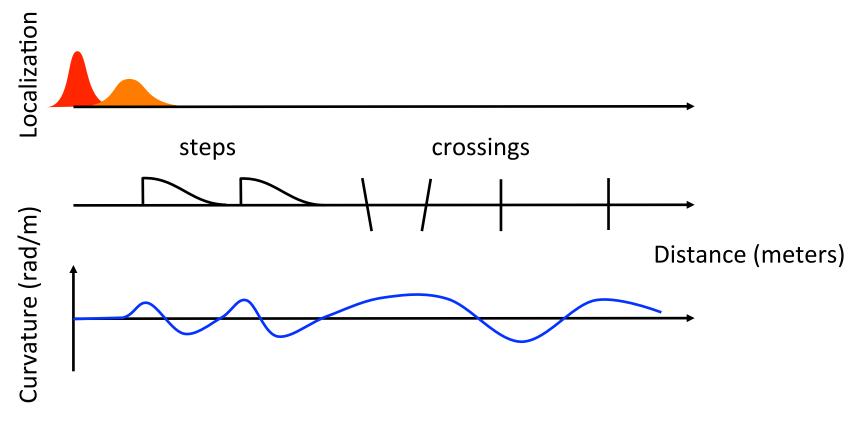
- Assume the map is perfect and correlate observed sensor readings with the map to estimate location
- This can be formulated as Bayesian estimation



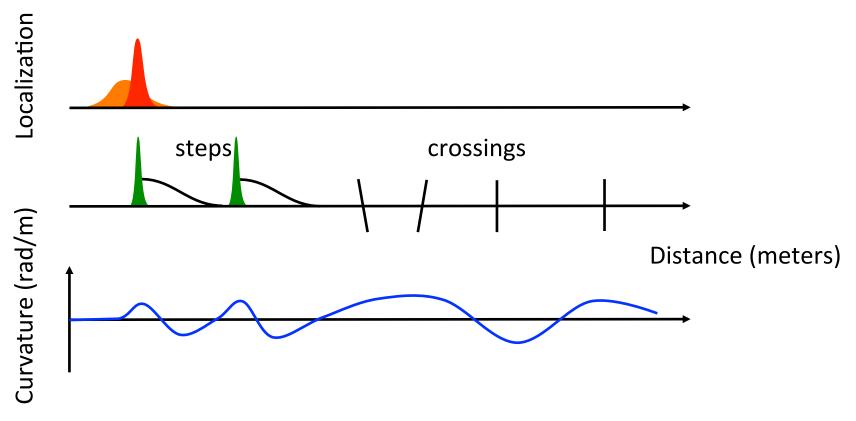
- This can be formulated as Bayesian estimation:
 - Probability distribution for distance along track
 - 1. Initial location (a "tracking" problem: we know start)



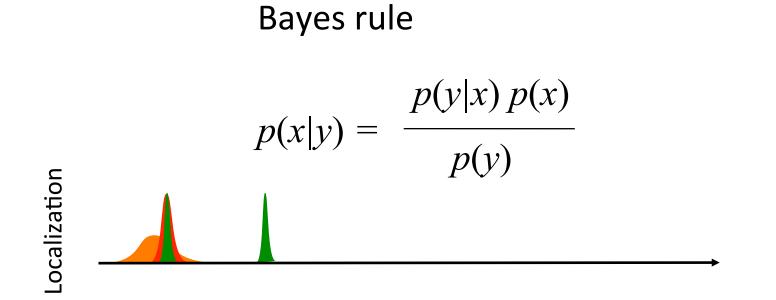
- This can be formulated as Bayesian estimation:
 - 2. Use dynamics to predict our position ($x + = v \Delta t$)
 - Move forward and uncertainty increases



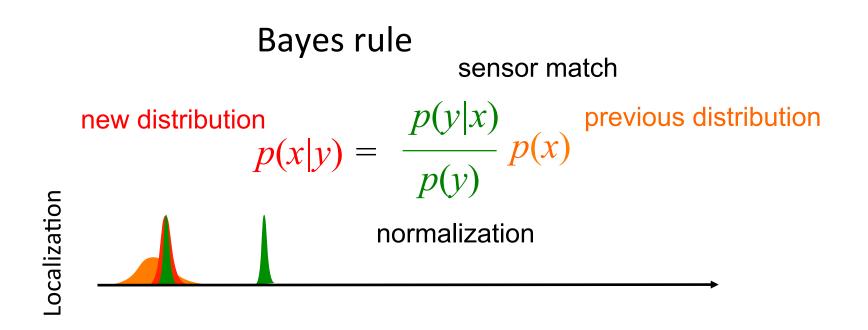
- This can be formulated as Bayesian estimation:
 - 3. Compare sensor readings to environment
 - Uncertainty should decrease (e.g., we see a step)



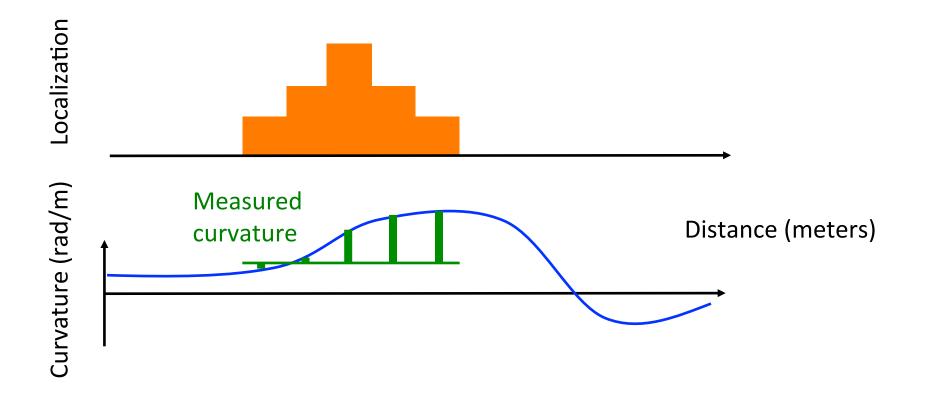
- This can be formulated as Bayesian estimation:
 - -2. Use dynamics to predict our position $x \leftarrow$
 - 3. Compare sensor readings *y* to map



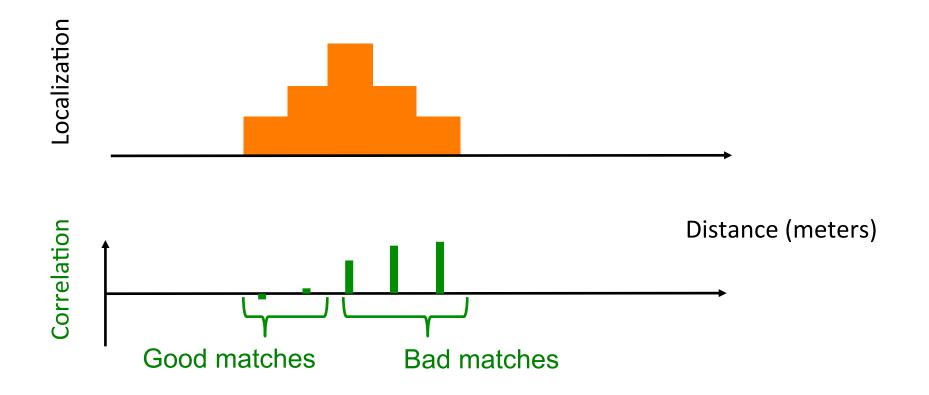
- This can be formulated as Bayesian estimation:
 - 2. Use dynamics to predict our position $x \leftarrow$
 - 3. Compare sensor readings y to map



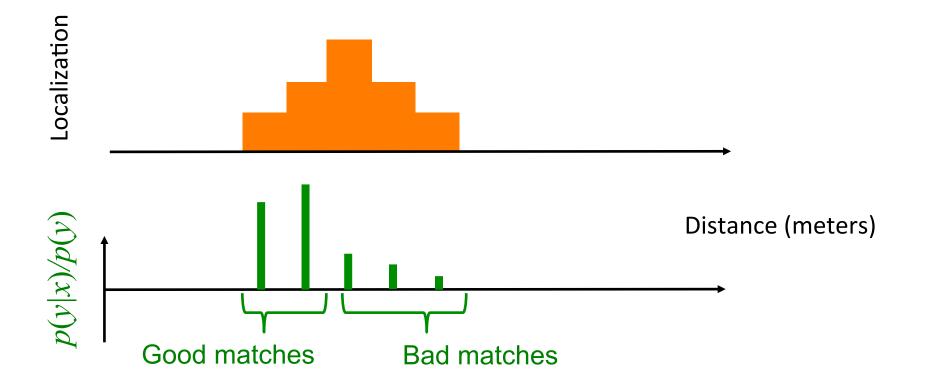
- Justin's strategy:
 - Distribution is discretized into five points
 - For each point, compare sensor reading and map:



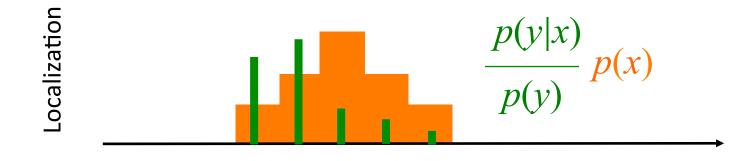
- Justin's strategy:
 - Distribution is discretized into five points
 - Heuristic likelihood of p(y|x)



- Justin's strategy:
 - Distribution is discretized into five points
 - Heuristic likelihood of p(y|x)

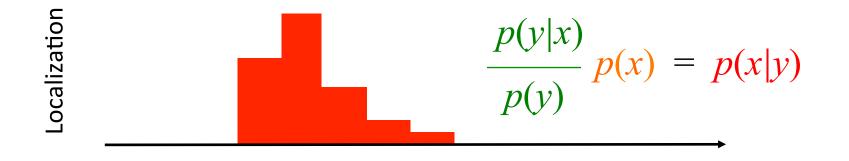


- Justin's strategy:
 - Distribution is discretized into five points
 - For each point, apply Bayes rule:



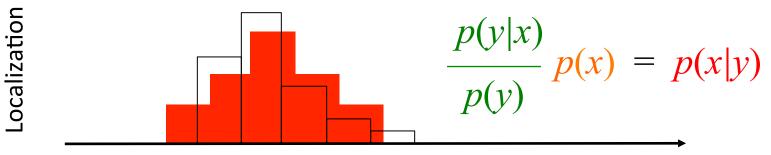
Distance (meters)

- Justin's strategy:
 - Distribution is discretized into five points
 - For each point, apply Bayes rule:



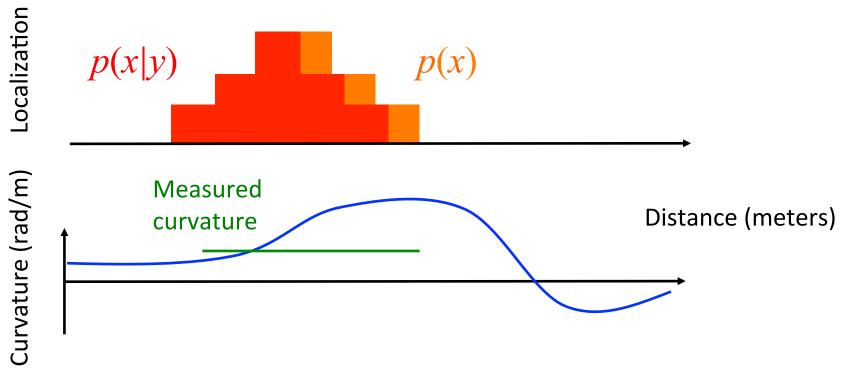
Distance (meters)

- Justin's strategy:
 - Distribution is discretized into five points
 - Update distribution (note I used only the mean and ignored the standard deviation as a hack)



Distance (meters)

- Justin's strategy:
 - Distribution is discretized into five points
 - Update distribution (note I used only the mean and ignored the standard deviation as a hack)



- More principled approaches (fewer hacks):
 - Kalman filters (with adjustment for nonlinearity):
 - Extended Kalman filter (using linearization)
 - Unscented Kalman filter (principled sampling)
 - Particle filters (many random samples)
 - (Justin's approach uses heuristic hacky sampling)
 - All methods use the two step process:
 - 1. Use dynamics to predict location
 - 2. Update location with sensor correlation (Bayes rule)

 For more information, see presentations like: <u>https://www.cs.cmu.edu/~motionplanning/lecture/Chap9-</u> <u>Bayesian-Mapping howie.pdf</u>