
EECS192 Lecture 1

Jan. 19, 2021

• What is Mechatronics?

• Project Description

• Autonomous system example

• Course Organization

• Huzzah32/ESP32 overview

• FreeRTOS tasks and timing

What is Mechatronics?

• Moore’s Law for electronics

• Moore’s Law for mechanics(?)

Key Technologies for Mechatronics:

• Signal processing

• Control

• …

SENSORS Algorithm Actuators
Structure

WORLD

Folded mirror array

Project Description

• Design Autonomous Race Car

• Unknown track (in principle, but home track will be
known)

• Follow track without hitting cones.

• Stop at end of track.

• Winning speed: 3.3 m/sec (Spring 2017 Natcar winner)

• (2018 9.7 ft/sec = 3.0 m/sec)

• Learning allowed (though only have 5 minutes total for
best run)

Hardware
You should have:
• Huzzah32

• RCNitro or equiv car

• USB Battery

To be shipped from Berkeley
• Line camera

• Jumper wires

• Analog Discovery scope

Thrun et al Stanley 2005

adapted from Thrun et al, JFR
23(9) 2006

33

adapted from Thrun et al, JFR
23(9) 2006

Course Organization
• Tues Lecture -> Wed Lab Demo -> 9 days -> Fri

checkoff hour (live Zoom) (tba)

• Partners: 2 is good, 3 is possible.

• Return equipment at end of semester for grade,
and car+CPU for reimbursement

• Checkoffs ``better is enemy of good’’- robustness:
needs to work in a window

Course Organization (cont)
Checkpoint sequence:

• NEW: CPU -> drive motor+servo -> line sense -> line
follow/fig 8 -> velocity control -> high speed steering

Round 1/Round2

Syllabus:

https://inst.eecs.berkeley.edu/~ee192/sp21/docs/syllabus.pdf

Course Organization (cont)
• Emphasis: robustness, simplicity.

Design/Simulate/Build/Test

• Goal: 10 hours per week per team member.

– Part of checkpoint: report weekly hours (important for course
tuning)

• What about Complexity?

• Reliability of the overall system (90%)N

(connectors, power supply, heat sinks, solder joints, CPU
stack, car mechanics, camera mount, control stability, lighting
robustness,…)

Checkpoint 0

Form a group of 2 (perhaps 3) students.

(Remember, choose wisely!)

Have the GitHub usernames of all team

members to get a private course GitHub

repository.

Note: these repositories will be deleted

at the end of the semester for re-use next

semester. You are advised to keep a local

clone!

CheckPoint 1 Fri Jan. 29

• Install tools, e.g. PlatformIO

• Compile and run SkeletonHuzzah32

• LED fade using PWM

• Timing:

– How long does a double cos() take?

– How long does log_add(“string”); take compared

to snprintf(log,sizeof(log),”string”); log_add(log);

– How long does it take to print a floating point?

Huzzah32-ESP32
• 240 MHz dual core Tensilica LX6 microcontroller with 600 DMIPS

• Integrated 192 KB instruction SRAM, 200KB Data SRAM, 128KB either

• ESP32-WROOM-32 integrates a 4 MB SPI flash, which is connected to

GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11. These six pins cannot

be used as regular GPIOs.

• Integrated 802.11b/g/n HT40 Wi-Fi transceiver, baseband, stack and LWIP

• 3 x UARTs

• 3 x SPI, 2 x I2C

• 12 x ADC input channels

• PWM/timer input/output available on every GPIO pin

• OpenOCD debug interface with 32 kB TRAX buffer

Integrated dual mode Bluetooth (classic and BLE)

Ultra-low noise analog amplifier

Hall sensor

10x capacitive touch interface

32 kHz crystal oscillator

2 x I2S Audio

2 x DAC

On-board PCB antenna

SDIO master/slave 50 MHz

SD card interface support

ESP32 Hardware block diagram

Huzzah32 pin out

Huzzah32 Schematic

https://cdn-learn.adafruit.com/assets/assets/000/041/630/large1024/feather_schem.png?1494449413

Software Introduction

• Why Real-time? Bare metal vs Linux

• Measuring Timing

• Tasks in FreeRTOS

• Printing to UART and log task

Software Notes-Basic real time model

Read sensors ➔ process ➔ output ….. Idle ……. Read sensors ➔ process ➔ output

User IO

Blocking IO

Printf

idleidle

Interrupt-

highest priority

Interrupt-

highest priority

Delay leads to instability (for EE128/ME134- negative phase), will

show later when discuss control

Example Timing Uncertainty in Linux: main control loop

1200 us420 us

Calculation loop: input/process/output. Note outliers.

Example Timing Uncertainty in Linux

1700 us340 us

Using printf in control loop (NOT RECOMMENDED)

Embedded Real-Time Programming with Multiple Tasks

FreeRTOS+VS+PlatformIO

• Queue – used across timing domains for
coherence of data

• Multiple tasks created at different priority for
handling control, sensors, logging, etc

– Log task: use for non-blocking printf for debugging

• Task List to monitor tasks (time used, stack
used)

SkeletonHuzzah32 SW Block Diagram

heartbeat

wifi_log_task

log_queue

uart_log_task

LED

control_task

user_task

Keyboard

input

timer_evt_task UART

Note conventions- data flow left to right

sendto

UDP

socket

main() start
tasks and
suspend

tick_start = xTaskGetTickCount();

This gives resolution of 1 ms, depending on CONFIG_FREERTOS_HZ

High resolution timing using built-in 64 bit counter

uint64_t task_counter_value;

double starttime;

timer_get_counter_value(TIMER_GROUP_0, TIMER_0,

&task_counter_value);

starttime=((double)task_counter_value/TIMER_SCALE);

Measuring Timing from ESP32

Non-blocking print
https://github.com/ucb-ee192/SkeletonHuzzah32

snprintf(log, sizeof(log),

"Idle. sum of cos = %d \n",(long)ZSum);

log_add(log);  snprintf is too slow, can use itoa(), etc

void log_add(char *log)

{ xQueueSend(log_queue, log, 0);

// send data to back of queue,

// non-blocking, wait=0 ==> return

immediately if the queue is already full.

}

static void uart_log_task(void *pvParameters)

{ …

xQueueReceive(log_queue, log, portMAX_DELAY);

Timing of printf, etc

took about 40 us with log_add(),

but 970 us with snprintf()

Checkpoint 1: measure timing for real-time debugging

Task creation example
/* heartbeattask.c*/

static void heartbeatTask(void *pvParameters); //

static=local

if(xTaskCreate(heartbeat,

"WRITE_TASK_1",

configMINIMAL_STACK_SIZE+1024,

NULL,

tskIDLE_PRIORITY + 2,

NULL)

!= pdPASS)

{ printf("Task creation failed!.\r\n");

while(1); // hang indefinitely

}
https://github.com/ucb-ee192/SkeletonHuzzah32

C function

Name for debugging purposes

Stack size for task

Pointer to parameters to pass into task

Task priority (0=lowest)

Optional handle to created task

Monitoring FreeRTOS Tasks- Stack Usage

void print_tasks();

of tasks 12

Task name number of cycles

IDLE0 283440623 49% (CPU 0)

usertask 142791054 24%

IDLE1 145004887 25% (CPU 1)

heartbeat 6661 <1%

timer_evt_task 194739 <1%

Tmr Svc 55 <1%

control_task 60360 <1%

esp_timer 209 <1%

ipc0 10215 <1%

main 95764 <1%

log_task 13490 <1%

ipc1 15121 <1% (inter process comm?)

➔ Starving the ``idle’’ process (will cause a crash).

➔ Make sure every process has vTaskDelay() for a lower priority process to run

Monitoring FreeRTOS Tasks

void print_tasks();

Name State Priority Stack Task#

control_task R 2 348 14

usertask R 0 504 16

IDLE1 R 0 1116 7

IDLE0 R 0 1012 6

heartbeat B 1 1584 15

timer_evt_task B 2 756 13

Tmr Svc B 1 1592 8

main S 1 2476 5

log_task B 1 856 12

esp_timer B 22 3640 1

ipc1 B 24 596 3

ipc0 B 24 564 2

Priority: 0 is lowest priority. Usertask is also low priority as it busy waits for input

Task #: order of task startup

State: R running, B blocked, S suspend

Class Introductions

Name

Year/major

Location (time zone)

Have a partner/team already?

Extra Slides

Pulse Width Modulation

https://github.com/espressif/esp-

idf/tree/b0150615dff529662772a60dcb57d5b559f480e

2/examples/peripherals/mcpwm

Also see

~/home/.platformio/packages/framework-

espidf/examples/peripherals/mcpwm

https://github.com/espressif/esp-idf/tree/b0150615dff529662772a60dcb57d5b559f480e2/examples/peripherals/mcpwm

LED PWM controller (Ch 15)

LED PWM controller (Ch 15)

Motor Control Pulse Width Modulator (MCPWM) (Ch 17)

Motor Control Pulse Width Modulator (MCPWM) (Ch 17)

Motor Control Pulse Width Modulator (MCPWM) (Ch 17)

– UTEA: the PWM timer is counting up and its value is equal to register A.

– UTEB: the PWM timer is counting up and its value is equal to register B.

– DTEA: the PWM timer is counting down and its value is equal to register A.

– DTEB: the PWM timer is counting down and its value is equal to register B.

Motor Control Pulse Width Modulator (MCPWM) (Ch 17)

Queue in FreeRTOS

Queue in FreeRTOS

Mastering the FreeRTOS™ Real Time Kernel

Process ID/Memory Management (Ch 28)

More specifically, when a code tries to access a MMU/MPU-

protected memory region or peripheral, the MMU or MPU will

receive the PID from the PID generator that is associated with the

CPU on which the process is running.

??? void vTaskAllocateMPURegions(TaskHandle_t xTask,

const MemoryRegion_t *const pxRegions)

test_thread1

test_thread1

RealTime

RealTime1

Main() idle

Project Proposal: RTOS timer and threads example

Instead of Ubuntu: FreeRTOS

MQTT: lightweight, publish-subscribe network protocol

The AWS IoT Greengrass Discovery library is used by your microcontroller devices to discover a

Greengrass core on your network.

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Communication_protocol
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html

Servo PWM

https://www.instructables.com/id/PANTILT-Camera-With-ESP32/

