
Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

1

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Write code which performs the following sequence of functions:

C2.1: Start wheels turning, and ramp up to full speed in 5 seconds and down to

zero speed in another 5 seconds.

C2.2: Set steering angle approximately half full-left and hold for 5 seconds. (For

example, if full steering range is +- 20 degrees, set steering angle to +10

degrees.)

C2.3: Set steering angle straight and hold for 5 seconds.

C2.4: Set steering angle approximately half full-right, and hold for 5 seconds.

C2.5: Set steering angle back to approximately straight.

C2.6: Show steering changing and wheels turning at the same time

C2.7: Report Data RAM and Instruction RAM usage. How much of each is left?

[pio run –v in terminal window]

C2.8: All members must fill out the checkpoint survey before the checkoff close.

Completion is individually graded

CP2- PWM for driving steering servo and ESC

2

Internal SRAM1 128KB

Internal SRAM0 192KB

Internal SRAM2 200KB

ESP32-WROOM

has no external

RAM

4MB FLASH

SRAM0

64 KB

SRAM0 128 KB-instruction

SRAM1 128 KB-instruction or data

SRAM2 200 KB-data

Some timing critical code may be placed into IRAM to reduce the penalty associated with loading the code

from flash. ESP32 reads code and data from flash via a 32 kB cache. In some cases, placing a function into

IRAM may reduce delays caused by a cache miss. 3

Huzzah32/ESP32 WROOM memory

(Intended to be easy since project proposal due Tues 2/9, and CP4 harder)

The car should be upside down, or lifted off the ground so it does not move

CAUTION: setting PWM to 1.0 ms or 2.0 ms can drive servo to the end of its range and

cause it to burn out.

C3.1 From the remote client keyboard, send a speed command for the drive motor. Pick

a range such as 0-100, and show that you can specify a range of values. The motor

should remain turning until the next command.

C3.2: Find the minimum ESC PWM value which causes the wheels to turn.

C3.3: With motors turning, send an ‘‘Emergency Stop’’ command to the car (the motor

should be turned off or braked, if available).

C3.4: From the remote client, send a command to set the steering angle.

C3.5: Find the range of steering angles for your car. (These values should be used for

range checking in your code for the rest of the semester.)

C3.6: Show that motor speed and steering can be set independently from the remote

client keyboard.

C3.7: Report Data RAM and Instruction RAM usage. How much of each is left?

From VS terminal > pio run –v

C3.8: All members must fill out the checkpoint survey before the checkoff close.

Completion is individually graded.

CP3- remote control with UDP

4

C4.1 Show car driving an open-loop topological figure 8, at any speed with at

least one full CW and at least one full CCW circle. Car should be going as slow

as practical.

C4.2 Show ability to stop car in middle of figure 8 using ‘‘Emergency stop

command’’

C4.3 Show that you are able to read the line camera data and discriminate the

line. Possible ways to do this include printing data to the serial console or using

the UDP logging framework (preferred). You must be able to explain the output

format quickly during the checkpoint.

C4.4 Use a dark surface and a white stripe approximately 2.5 cm wide. When

the camera is moved to the left or right of the track, show that the steering

servo/car front wheels will respond appropriately. You are not expected to have

a nice sensing algorithm (findmax is sufficient) or well tuned steering control

loop for this checkpoint.

C4.5 All members must fill out the checkpoint survey before the checkoff close.

Completion is individually graded.

CP4- Open Loop Figure 8 and Line Camera

5

The car should be upside down, or lifted off the ground so it does not move

C5.1 Demonstrate that you have velocity sensing working and the output in terms of

some physical units (m/s, mm/s, etc). Turning the wheels by hand should show a low

velocity.

C5.2 Set a low constant motor PWM. Show that the estimated velocity is relatively

constant.

C5.3 Show that with the constant PWM from C5.2 that the velocity sensor estimated

velocity drops if the wheels are loaded or stopped.

C5.4 Show velocity control. The recommended target setpoint is 3 m/s, which should

provide enough encoder counts for a somewhat stable control loop. It's fine if the

applied PWM is noticeably jittering or if the actual velocity is inaccurate. However, if you

load the wheels (with, say, a book), the controller should compensate by applying a

higher drive strength. (Print PWM and sensed velocity as load is applied to wheel.)

C5.5 Show velocity control working with the basic line sensing from C4.4. (Printing

PWM, sensed velocity, and line center is sufficient, as load is applied to wheel and car is

positioned by hand)

C5.6 All members must fill out the checkpoint survey before the checkoff close.

Completion is individually graded.

CP5- velocity sensing

6

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

7

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Example Line camera data

Start line Old style finish line
crossingSteps

TSL 1401 line sensor

9

SI: serial input. SI defines the start of the data-out sequence.

AO: analog output

CLK: clock

TSL 1401 line sensor

Line sensor

TSL 1401 line sensor- option exposure control

Line sensor

SI

CLK

AO

Exposure time (>25 us)

129 clocks

Clock only

no A/D read

A/D read

~12 us ???

11

Timing options:

• PWM channel for clock

• Manual clock generation (gpio_set_level(), read_atod, etc)

• vTaskDelay(pdMS_TO_TICKS(3000)); [1 ms resolution]

• Busy wait (may trigger watch dog for long delays)

while(task_counter_value < end_value)

{ timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &task_counter_value); }

• Interrupt alarm [usec resolution] (see timer-group-example.c in SkeletonHuzzah32)

docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/timer.html

Automatic Gain Control

• Choose exposure time based on average illumination

• Keep frame rate constant e.g. read sensor twice 1+4 ➔ 4 +1 ms

• (Constant time is important for control- will see later)

12

Possible algorithms for line detection
e.g. prototype with scipy.signal.filter. Many options.
Here are 3 suggestions:

• Subtraction- to find left and right edge of line (ok if
not noisy, somewhat lighting invariant)

• Difference of Gaussians (idea is to smooth then
differentiate)

• Correlation (best match position for known features)

– scipy.signal.correlate

13

Try out algorithms in HW1

TSL 1401 line sensor NATCAR 8 bit
Frame 0

Frame 0

Frame 1

Frame 2 Frame 2-Frame 0

Frame 1-Frame 0

15/19

https://image.slidesharecdn.com/cbirfeatures-

150705141111-lva1-app6892/95/cbir-features-47-

638.jpg?cb=1436105787

Alternative #2 Difference of Gaussians
Laplacian of Gaussian smoothing

Convolve with Difference of Gaussians kernel (approx. to LoG)

Note: zero crossing is edge location

Alternative #3 Correlation

16

arg min || I(y) – f(y – Dy) ||2
Dy

y

I(y)

0

f(y)

Notes: normalize, find by least squares or search. Can use Dy(n-1) to initialize

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

17

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

HW1 Line Sensing

18/20

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

• Survey for Cory Courtyard

19

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Velocity sensor mounting (preview- week 4)

20

https://www.sinotech.com/wp-content/uploads/quadrature-encoder.gif

3.3 V DC A

B

100 us

response time

(? Analog) or

pulse count input or

GPIO interrupt?

3.3 V

Sharp GPS260

• Choose current 4 mA in LED

• Vcc = 3.3 V

• May want regulated/clean voltage for Vcc

velocity sensing 21

100 us

response

time

3.3 V

Quadrature Encoder

https://www.sinotech.com/wp-content/uploads/quadrature-encoder.gif

3.3 V DC A

B

22http://codeforfree.weebly.com/uploads/1/0/1/6/10160088/5858962_orig.png

Fab suggestion: aluminum foil covered with

black paper with slots. 4 slots probably enough.

Note: sensors can be placed where convenient-

don’t need to look at same slot.

Velocity sensing: encoder signal

t

Wheel sensor

GPIO input

Car velocity = (rwheel Dq)/DT

If rwheel = 4 cm, Dq = p/4

Dx = 3 cm = rwheel Dq

Dq

3.3 V

Velocity sensing: method #1 uniform sampling

t

q(t)

Uniform

sampling

1 1 1 1 2 0 0 0

Dq

Dq
Dq

10 ms

Nrwheel Dq
Vuniform=

10 ms

Number of

edges in10 ms:

Dq

What is the problem with these parameters if

Dx = 3 cm = rwheel Dq

?

q(t)

Velocity sensing: method #2 edge timing

t

q(t)

Edge

timing

Dq

Dq
Dq

DT1

Rwheel Dq

DT1

Vedge=

Dq

q(t)

Velocity sensing - options

V~ (change in angle)/(change in time)

Method #1: count number of edges in an interval (Pulse Counter Module)

TRM: 18 Pulse Counting

Method #2: count time between edges:

interrupt on rising or falling edge, using GPIO interrupt

measure time with

timer_get_counter_value(TIMER_GROUP_0,

TIMER_0,

&task_counter_value);

docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html

Velocity Sensing
estimating Dx/DT

velocity sensing

Note: care about velocity sensing usually at cruise speed (also stopping)

Time (ms)

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

28

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Pulse Counting (Ch 18) (method #1)
github.com/espressif/esp-idf/tree/release/v4.2/examples/peripherals/pcnt

29

Missing function

Encoder input

Pulse Counter

30

Reading # of pulses:
pcnt_get_counter_value(pcnt_unit_t pcnt_unit, int16_t *count)

Get pulse counter value. NOTE: signed int, so range is from 0 to + 32767

(be careful when subtracting: count – old_count)

Initializing:

esp_err_t pcnt_counter_clear(pcnt_unit_t pcnt_unit)

Clear and reset PCNT counter value to zero.

esp_err_t pcnt_unit_config(const pcnt_config_t *pcnt_config)

Configure Pulse Counter unit. pcnt_config: Pointer of Pulse Counter unit configure

parameter

esp_err_t pcnt_set_pin(pcnt_unit_t unit, pcnt_channel_t channel,

int pulse_io, int ctrl_io)

Configure PCNT pulse signal input pin and control input pin.

pcnt config

31

pcnt_config_t pcnt_config = {

// Set PCNT input signal and control GPIOs

.pulse_gpio_num = PCNT_INPUT_SIG_IO,

.ctrl_gpio_num = PCNT_PIN_NOT_USED, // use just signal input, one GPIO

.channel = PCNT_CHANNEL_0,

.unit = unit,

// What to do on the positive / negative edge of pulse input?

.pos_mode = PCNT_COUNT_INC, // Count up on the positive edge

.neg_mode = PCNT_COUNT_INC, // Count up on negative edge

// What to do when control input is low or high?

.lctrl_mode = PCNT_MODE_KEEP, // Keep the primary counter mode if low

.hctrl_mode = PCNT_MODE_KEEP, // Keep the primary counter mode if high

// Set the maximum and minimum limit values to watch

.counter_h_lim = PCNT_H_LIM_VAL,

.counter_l_lim = PCNT_L_LIM_VAL,

};

/* Initialize PCNT unit */

pcnt_unit_config(&pcnt_config);

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 interrupt for time measurement

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

32

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

SkeletonHuzzah32 Branch UDPCommd SW Block Diagram

heartbeat

wifi_log_task

log_queue

uart_log_task

LED

control_task

user_task
Keyboard input

timer_evt_task

UART

Note conventions- data flow left to right

sendto

UDP

socket

main() start
tasks and
suspend

Possible starting point for proposal. However,

missing inputs, outputs, Steering, velocity, etc

recvfrom

UDP

socket

cmd_queue

To be added

33

Skeleton Tasks

34

FreeRTOS tick
vTaskDelay(delay / portTICK_PERIOD_MS);

control_task

(pri 5, delay 1000)

Heartbeat

(pri 1, delay 1000)

Wifi_log_task

(pri 1, delay 10)

User_task

(pri 0, 100)

Idle

(pri 0)
1000 1001

Skeleton Tasks with interrupt

35

FreeRTOS tick

vTaskDelay(delay / portTICK_PERIOD_MS);

control_task

(pri 5, delay 1000)

Heartbeat

(pri 1, delay 1000)

Wifi_log_task

(pri 1, delay 10)

User_task

(pri 0, 100)

Idle

(pri 0)
1000 1001

Encoder GPIO

Interrupt handler calculate

time since

last edge

GPIO Interrupt example

36/20

Example code:

https://github.com/espressif/esp-idf/tree/release/v4.2/examples/peripherals/gpio

Interrupt handler function:

static void IRAM_ATTR gpio_isr_handler(void* arg)

{ read timer, calculate elapsed time and queue stuff here }

Note timer resolution by default 0.2 us

Setting up interrupt:

gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT); //install gpio isr service

//hook isr handler for specific gpio pin:

gpio_isr_handler_add(GPIO_INPUT_IO_0,

gpio_isr_handler,

(void*) GPIO_INPUT_IO_0);

GPIO rising edge interrupt setup

37/20

typedef struct

{

uint64_t pin_bit_mask; /* GPIO pin: set with bit mask, each bit maps to a GPIO */

gpio_mode_t mode; /*!< GPIO mode: set input/output mode */

gpio_pullup_t pull_up_en; /*!< GPIO pull-up */

gpio_pulldown_t pull_down_en; /*!< GPIO pull-down */

gpio_int_type_t intr_type; /*!< GPIO interrupt type */

} gpio_config_t;

Mode: {disable, input, output, etc}

Pullup_t, pulldown_t: {enable, disable}

typedef enum {

GPIO_INTR_DISABLE = 0, /*!< Disable GPIO interrupt */

GPIO_INTR_POSEDGE = 1, /*!< GPIO interrupt type : rising edge */

GPIO_INTR_NEGEDGE = 2, /*!< GPIO interrupt type : falling edge */

GPIO_INTR_ANYEDGE = 3, /* GPIO interrupt : both rising and falling edge */

GPIO_INTR_LOW_LEVEL = 4, /*GPIO interrupt type : input low level trigger */

GPIO_INTR_HIGH_LEVEL = 5, /*GPIO interrupt type : input high level trigger */

GPIO_INTR_MAX,

} gpio_int_type_t;

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• ESP32 pulse count and interrupt

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

38

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Velocity control overview

Proportional control:

u = kp*e = kp* (r-y);

Here: r is desired velocity, u is PWM % (1-2 ms)

Proportional + integral control
U = kp*e + ki * e_sum;

e_sum = e_sum + e;

Motor

+ car

Discrete Time Control

u[k] = kp*(r[k]-x[k])

Watch out for delay!

Topics

• Checkpoints 2,3,4,5

• Line Camera- line finding

• HW1 Line finding (Python)

• Position Encoder/ Velocity Sensing

• Peripheral interface: A/D, pulse count (intro)

• Velocity control (intro)

• Battery safety

Notes:

• 2/16 Quiz 1 (10 minutes) line camera timing issues

41

EECS192 Lecture 4

Line Sensor II and Velocity Sensing

Feb. 9, 2021

Battery Model- 3S

42

Rload

+

+

+

i

3.7V

3.7V

3.7V

Battery Model- 3S
avoid weakly charged cell

43

Rload

+

+

+

i

3.7V

3.7V

-3.7V

Latchup

Make sure Huzzah32 powered first,

before ESC,

before position encoder

LATCHUP!

Caution: input voltage from sensor may be greater than 0.3V when CPU is off

VDD = 0!

Latchup phenomena:

make sure Vin always less than Vdd

Protection circuit

45

Protection circuit

Schottky

diode

Summary

46

Line Camera- line finding

HW1 Line finding (Python)

Position Encoder/ Velocity Sensing

Peripheral interface: pulse count, GPIO interrupt

Velocity control (intro)

Battery safety

Extra Slides

47/20

pcnt configuration

48

Pulse counter configuration options

The configuration is provided separately per unit’s channel using pcnt_config_t and

covers:

•The unit and the channel number this configuration refers to.

•GPIO numbers of the pulse input and the pulse gate input.

•Two pairs of parameters: pcnt_ctrl_mode_t and pcnt_count_mode_t to define how the

counter reacts depending on the the status of control signal and how counting is done

positive / negative edge of the pulses.

•Two limit values (minimum / maximum) that are used to establish watchpoints and

trigger interrupts when the pulse count is meeting particular limit. [also sets counter

min/max range]

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/pcnt.html?highlight=pulse%20count#_CPPv413pcnt_config_t
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/pcnt.html?highlight=pulse%20count#_CPPv416pcnt_ctrl_mode_t
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/pcnt.html?highlight=pulse%20count#_CPPv417pcnt_count_mode_t

ADC Converter (Ch. 30)

adc1_config_width(ADC_WIDTH_BIT_12);

adc1_config_channel_atten(ADC1_CHANNEL_0,ADC_ATTEN_DB_0);

int val = adc1_get_raw(ADC1_CHANNEL_0);

ATTEN_DB_0: 0-1 V, ATTEN_DB_11, 0-2.5V

https://github.com/espressif/esp-idf/tree/release/v4.2/examples/peripherals/adc

Claim: 2 M samples per second (Msps) = 0.5 us. Actual 45 us for 12 bits.
49

Control Synopsis- Discrete Time

Control Law (P):

New state equations:

U(kT) = kp [r(kT) – x(kT)]

For stability:

Notes: stability depends on gain and T!

