Topics
• Checkpoint 5:
 • Available space survey - circle/figure 8
• Checkpoint 6:
 • Motor model (for velocity control)
• Steering Introduction
• Simulator (preview)
The car should be upside down, or lifted off the ground so it does not move.

C5.1 Demonstrate that you have velocity sensing working and the output in terms of some physical units \((m/s, \text{mm/s}, \text{etc})\). Turning the wheels by hand should show a low velocity.

C5.2 Set a low constant motor PWM. Show that the estimated velocity is relatively constant.

C5.3 Show that with the constant PWM from C5.2 that the velocity sensor estimated velocity drops if the wheels are loaded or stopped.

C5.4 Show velocity control. The recommended target setpoint is 3 m/s, which should provide enough encoder counts for a somewhat stable control loop. It's fine if the applied PWM is noticeably jittering or if the actual velocity is inaccurate. However, if you load the wheels (with, say, a book), the controller should compensate by applying a higher drive strength. (Print PWM and sensed velocity as load is applied to wheel.)

C5.5 Show velocity control working with the basic line sensing from C4.4. (Printing PWM, sensed velocity, and line center is sufficient, as load is applied to wheel and car is positioned by hand)

C5.6 All members must fill out the checkpoint survey before the checkoff close. Completion is individually graded.
CP6- Closed Loop Track with Velocity Control

Set up a figure 8* track. Use 1 meter string with chalk attached to make circles, and connect with tangent lines, and 60 degree crossing. Use white masking tape for figure 8 if on light background, or black tape if on light background.

C6.1 Show car driving the figure 8*, at speed of 1 m/sec or better.
(You may use a wireless command to tell the car to start or stop running, but no other commands may be sent to the car.)

C6.2 Submit plots on one graph: steering angle command (degrees or radians), track error (cm), ESC command (% full speed), sensed velocity, all versus time axis in seconds.

C6.3 All members must fill out the checkpoint survey before the checkoff close. Completion is individually graded.

*If you do not have space for a full size figure 8, use smaller than 1 m radius to fit. If you do not have room for a figure 8, use a circle of up to 1 m radius.

(example Amazon tape): https://www.amazon.com/Removable-Painters-Painting-Labeling-Stationery/dp/B082R27TP6/ref=sr_1_7?dchild=1&keywords=1+inch+white+masking+tape&qid=1613947385&s=industrial&sr=1-7
vTaskDelay((delay / portTICK_PERIOD_MS);
10 Questions to Consider when Reviewing Code

Jacob Beningo
Embedded Systems Conference -2017

1. Does the program build without warnings?
2. Are there any blocking functions?
3. Are there any potential infinite loops?
4. Should this function parameter be const?
6. Has extern been limited with a liberal use of static?
7. Do all if … else if … conditionals end with an else?
8. Are assertions and/or input/output checks present?
9. Are header guards present? The guard prevents double inclusion of the #include directives.
10. Is floating point mathematics being used?
Topics

• Checkpoint 5:
 • Available space survey - circle/figure 8
• Checkpoint 6:
 • Motor model (for velocity control)
• Steering Introduction
• Simulator (preview)
DC Motor Physical Model

\[i = \text{current} \]
\[B = \text{magnetic field strength} \]

\[
\vec{F} = i \vec{l} \times \vec{B} \\
\tau = \vec{r}_1 \times \vec{F}_1 + \vec{r}_2 \times \vec{F}_2
\]
Rotating past the $\theta = \pi/2$ line (blue) is a problem if current in the loop is in the same direction, because it would cause the reversal of the torques.
So, we add a commutator to *reverse* the current through the loop when the coils turn past $\theta = \pi/2$
It works, but big torque ripple with only two segment commutator.
Four segment commutator \rightarrow reduced torque ripple.
(Current passing only through one winding at a time)
Now, less torque ripple.

Same principle applies to a 6-segment commutator design, like we discussed in class
Motor Model

Torque equation: \(\tau = k_\tau i_m \)

Faraday’s Law: \(-d\Phi/dt\), where \(\Phi \) is magnetic flux in loop

Back EMF equation: \(V_e = k_e \dot{\theta}_m \)
Motor Electrical Model

Back EMF
Motor electromechanical behavior

Also see motor worksheet……

Torque equation: \(\tau = k_\tau \dot{i}_m \)
Back EMF equation: \(V_e = ke \dot{\theta}_m \)

Conclusion:
\(\langle i_m \rangle = ? \)

Motor Resistance?
Peak current?

\[i_m = \frac{V_{BAT} - k_e \dot{\theta}_m}{R_m} \]
Motor Electrical Model
Back EMF
Motor electromechanical behavior

Also- see motor worksheet......

$$i_m = \frac{V_{BAT} - k_e \dot{\theta}_m}{R_m}$$

Conclusion:
$$\langle i_m \rangle = ?$$
Motor model

For this problem, consider a DC permanent magnet motor (as used in your car). The car is on a carpet and moves in a straight line with no slip between the wheels and the carpet. The car is initially moving at a speed of 2 meters per second.

You can assume a motor model as shown below. The qualitative shape of the curves is more important than magnitudes.

Let peak speed = 5 m/sec
Accel = 5 m/s²
k_e = 1 v/(m/sec)
On board

(for answer see sp99 final solution)
PWM Issues for Motor

PWM for Main Motor control

\[\langle i_m \rangle = \left(\frac{T}{T_0} \right) i_{\text{max}} \]

Is \(i_{\text{max}} \) constant?
H Bridge Concept

The diagram illustrates the basic concept of an H Bridge, which is a four-switch configuration used to control the direction and flow of current to a motor (S). The table below outlines the states of switches S1, S2, S3, and S4, and their function:

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Function?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>
Consider a DC permanent magnet motor (as used in your car). The car is initially at rest. The motor is connected as shown below. Neglect battery and switch resistance. Neglect motor inductance. Assume diode is ideal.
Assume motor resistance = 0.2 ohm, and that the car accelerates to 4 m/s in 2 seconds.
Assume back EMF constant is 1V/(m/s).
Assume time constant for deceleration is 1 second.

Switch turns on at 0 sec, off at 2 sec.

Complete the sketches below for motor current i_m, motor voltage V_m, and car velocity.
Topics

- Checkpoint 5:
- Available space survey - circle/figure 8
- Checkpoint 6:
- Motor model (for velocity control)
- Steering Introduction
- Simulator (preview)
Bicycle Steering Model
Bicycle Steering Model

More detailed models see: https://inst.eecs.berkeley.edu/~ee192/sp15/refSteer.html

\[\dot{x}_b = V \cos(\theta(t)) \] \hspace{1cm} (1)

\[\dot{y}_b = -V \sin(\theta(t)) \] \hspace{1cm} (2)

\[\dot{\theta} = \frac{V}{L} \tan(\delta(t)) \] \hspace{1cm} (3)

\[y_a = y_b - L \sin(\theta(t)) \] \hspace{1cm} (4)
Bicycle Steering Model-linearized

\[
\begin{align*}
\dot{x}_b &= V \cos(\theta(t)) \\
\dot{y}_b &= -V \sin(\theta(t)) \\
\dot{\theta} &= \frac{V}{L} \tan(\delta(t)) \\
y_a &= y_b - L \sin(\theta(t))
\end{align*}
\]

Original non-linear equations

Assume small angle, constant V:

\[
\begin{align*}
\dot{y}_b &\approx -V \theta \\
\dot{\theta} &\approx \frac{V}{L} \delta(t) \\
\dot{y}_a &\approx \dot{y}_b - L \dot{\theta} = -V \theta - L \dot{\theta}
\end{align*}
\]

\[
\ddot{y}_a = \frac{-V^2}{L} \delta(t) - V \dot{\delta}(t).
\]
Bicycle Steering Model

Proportional control:

\[\delta(t) = k_p y_a(t) \]

Command angle

Lateral error

Check angle in your car, check sign of \(k_p \)…
Bicycle Steering Model

Proportional control:
\[\delta(t) = k_p y_a(t) \]

Laplace transform:
\[
\ddot{y}_a + V k_p \dot{y}_a(t) + \frac{V^2}{L} k_p y_a(t) = 0.
\]

Eigenvalues:
\[
\lambda_{1,2} = \frac{V}{2} \left(-k_p \pm \sqrt{k_p^2 - \frac{4k_p}{L}} \right)
\]
Steering Control overview

Proportional control:
\[u = kp \cdot e = kp \cdot (r - y); \]

Proportional + derivative control:
\[u = kp \cdot e + kd \cdot y_{\text{sum}}; \]
\[y_{\text{dot}} = (y - y_{\text{old}}) / T; \]

Proportional + integral control:
\[u = kp \cdot e + ki \cdot e_{\text{sum}}; \]
\[e_{\text{sum}} = e_{\text{sum}} + e; \]

Offset from track
\[r(t) = 0 \text{ (mostly)} \]
Where might offset be useful?

Check sign for \(kp \)….
Bicycle Steering Control

Proportional control:
\[r = 0 \quad \text{(to be on straight track)} \]
\[\delta = u = kp \cdot e \]

Proportional+derivative

P+I+D
Bicycle Steering Model- Proportional control

Proportional control: \[\delta(t) = k_p y_a(t) \]

\[\ddot{y}_a + V k_p \dot{y}_a(t) + \frac{V^2}{L} k_p y_a(t) = 0. \]

Eigenvalues:

\[\lambda_{1,2} = \frac{V}{2} \left(-k_p \pm \sqrt{k_p^2 - \frac{4k_p}{L}} \right) \]

Critical damping:

\[\lambda_1 = \lambda_2 \Rightarrow k_p^2 = 4 \frac{k_p}{L} \quad \text{or} \]

\[k_p = 4/L = 4/0.3 \text{ m} = 13 \text{ rad/m} = 760 \text{ deg/m} \]

At 2 m/s, doesn’t work well- servo saturates, also other non-linear dynamics…
Bicycle Steering Model - Proportional control

2 m/s $k_p = 800 \text{ deg/m} \quad K_d = 0$

1 m/s $k_p = 800 \text{ deg/m} \quad K_d = 0$
Lesson: if tracking is good, steering angle change is small
Example under-damped steering:
Step: 15 cm
Choose step response 1m = 300 ms
Then lateral velocity = 15 cm/300 ms = 0.5 m/sec
At mid point:
\[\delta = 0 = kp \times 7.5 \text{ cm} + kd \times 0.5 \text{ m/sec} \Rightarrow kd \approx [0.15 \text{ sec}] kp \]
Step: 15 cm
Choose step response 1 m = 300 ms
Then lateral velocity = 15 cm/300 ms = 0.5 m/sec
Proportional + Integral

Anti-windup
Proportional + Integral

P+I control: \(\text{delta} = kp \ e + ki \ (\text{integral e}) \)
P control: \(\text{delta} = kp \ e \)

Anti-windup
Topics
• Checkpoint 5:
• Available space survey- circle/figure 8
• Checkpoint 6:
• Motor model (for velocity control)
• Steering Introduction
• Simulator (preview)
V-rep simulation - FPV

demo

Round2-fastvcar-v2 + simulator-pub/controller.py
Extra Slides
V-rep simulation

- **lat err (m)**
 - Time (s) range: 0 to 15
 - Graph showing laterr vs. time

- **angle (deg)**
 - Time (s) range: 0 to 15
 - Graph showing angle vs. time

- **velocity (m/s)**
 - Time (s) range: 0 to 15
 - Graph showing velocity vs. time

Track Section
- Time range: 0 to 1440

Track Center
- Time range: 0 to 1440
Proportional + derivative control.

\[K_p = 40 \text{ deg/cm, } 70 \text{ rad/m} \]
\[K_d = 1000 \text{ deg/(m/sec)} \]
\[V = 3 \text{ m/s, slew rate } 600 \text{ deg/0.16 sec} \]

NOTE: = bang-bang!

What is problem with bang bang?

Break servo, nonlinear (unstable)
Proportional + derivative control.

\[K_p = 200 \text{ deg/m}, \]
\[K_d = 30 \text{ deg/(m/sec)} = (0.15 \text{ sec}) K_p \]

\[V = 3 \text{ m/s}, \text{slew rate} 600 \text{ deg/0.16 sec} \]

NOTE: = not bang-bang
Proportional + derivative control.
Kp = 200 deg/m, Kd = 30 deg/(m/sec)
V=3 m/s NOTE: NO STEERING DELAY, no deadband

```python
def set_steering_fast(self, angle_cmd, dt):
    self.steering_state = angle_cmd  # update state
    self.vr.simxSetFloatSignal('steerAngle',
                                angle_cmd * (math.pi / 180.0),
                                vrep.simx_opmode_oneshot)
    return(angle_cmd)
```
Slew 600 deg/160 ms

Kp = 200 deg/m, Kd = 30 deg/(m/sec). V=3 m/s

Slew 60 deg/160 ms
Feedforward
Feedforward

\[r(x) = \]

\[2 \rightarrow 3 \rightarrow 4 \]

\[\rightarrow 3 \rightarrow 4 \rightarrow 15 \rightarrow 15 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 4 \]

Diagram shows a feedback control system with reference input, error, controller, plant, sensor, and output.
Feedforward using track memorization

\[\delta = k_p y_a \]

Check signs ... \(r(x) = -e(x + v \Delta t) \) preview of turn

or \(\delta = k_p y_a + (1 - a) \delta_{old} \)

\[r(x) = \]

[Diagram showing the feedforward process]
Control Synopsis

State equations: \[\dot{x}(t) = ax(t) + bu(t) \]

Output equations: \[y(t) = cx(t) + du(t) \]

Control Law (P): \[u(t) = k_p e(t) = k_p (r(t) - y(t)) \]
Control Synopsis

Control Law (P): \[u(t) = k_p e(t) = k_p (r(t) - y(t)). \]

New state equations:
\[\dot{x} = ax + b k_p e(t) = ax + b k_p (r - x) = (a - b k_p) x + b k_p r. \]

Zero Input Response (non-zero init condx, r(t)=0):
\[x(t) = x(0) e^{(a - b k_p) t} \quad \text{for} \quad t \geq 0. \]

\[a' = a - b k_p \]
\[b' = b k_p \]

Total Response (non-zero init condx) by convolution:
\[x(t_o) = e^{a' t_o} x(0) + \int_0^{t_o} e^{a' (t_o - \tau)} b' r(\tau) d\tau. \quad (10) \]

Step Response (zero init condx) by convolution:
\[x(t_o) = b' \int_0^{t_o} e^{a' t_o} e^{-a' \tau} d\tau = \frac{-b' e^{a' t_o}}{a'} e^{-a' \tau} \bigg|_0^{t_o} = \frac{b'}{a'} (1 - e^{-a' t_o}). \quad (11) \]
Control Synopsis - Discrete Time

Superposition of Step Responses

\[x((k + 1)T) = e^{a(k+1)T}x(0) + e^{a(k+1)T} \int_0^{(k+1)T} e^{-a\tau} bu(\tau) d\tau . \] \hspace{1cm} (15)

\[x(kT) = e^{akT}x(0) + e^{akT} \int_0^{kT} e^{-a\tau} bu(\tau) d\tau . \] \hspace{1cm} (14)

\[x((k+1)T) = e^{aT}x(kT)+e^{a(k+1)T} \int_{kT}^{(k+1)T} e^{-a\tau} bu(\tau) d\tau = e^{aT}x(kT)+\int_0^T e^{a\lambda}bu(kT)d\lambda , \] \hspace{1cm} (16)
Control Synopsis- Discrete Time

\[G(T) \equiv e^{aT} \quad \text{and} \quad H(T) \equiv b \int_{0}^{T} e^{a\lambda} d\lambda. \]
\hfill (17)

State equations:

\[x((k + 1)T) = G(T)x(kT) + H(T)u(kT) \]
\hfill (18)

Output equations:

\[y(kT) = Cx(kT) + Du(kT). \]
\hfill (19)

Total Response (non-zero init condi) by convolution:

\[x(k) = G^k x(0) + \sum_{j=0}^{k-1} G^{k-j-1} H u(j). \]
\hfill (23)
Control Synopsis - Discrete Time

Control Law (P):

\[U(kT) = k_p [r(kT) - x(kT)] \]

New state equations:

\[x((k + 1)T) = G(T)x(kT) + H(T)k_p(r(kT) - x(kT)) = [G - Hk_p]x(kT) + Hk_p r(kT) \] \hspace{1cm} (24)

\[x((k + 1)T) = [e^{aT} + \frac{k_p}{a} (1 - e^{aT})]x(kT) + Hk_p r(kT) = G'x(kT) + Hk_p r(kT) \] \hspace{1cm} (25)

For stability:

\[|e^{aT} - \frac{k_p}{a} (e^{aT} - 1)| < 1. \] \hspace{1cm} (26)

Notes: stability depends on gain and \(T! \)
Discrete Time Control

\[u[k] = kp \cdot (r[k] - x[k]) \]

Let \(x[k] = y[k] \)

Let \(e(t) \), \(u = kp \cdot e(t) \)

On board
Example control- discrete time

First order CT system

\[\dot{x} = -x + u \]

Let \(x = \) car velocity
Reference \(r = 1 \) m/s unit step, \(k = 3 \)
\(e(t) = r(t) - x(t) \)
Let control input \(u[n] = 3(r[n] - x[n]) = 3e[n] \),

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>x(t)</th>
<th>e(t) = r(t) - x(t)</th>
<th>u(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>-2.5</td>
<td>-7.5</td>
</tr>
<tr>
<td>4</td>
<td>-3.5</td>
<td>4.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Watch out for delay!
Watch out for excess gain!

Time Series Plot:unnamed
Circle at 10 m/s

Slow down due to steering sliding