EECS192 Lecture 7
Motor Modelling and Steering Introduction
Mar. 2, 2021

Topics

Checkpoint 5: feedback

Checkpoint 6: closed-loop control
Time spent survey

HW 1 Notes

PWM for motor drive/MOSFET intro
Steering control |

Embedded Issues: deadlock

Checkpoint 5 feedback

1. printf delay destabilizing control, and disrupting velocity estimate
1. Use snprintf() then log_add() (either UDP or UART)

2. Tasks: WDT

3. Resource sharing Timer, Core0 and Core1

Monitoring FreeRTOS Tasks- IDLEOQ/1

vold print tasks();
of tasks 12

Task name number of cycles

IDLEO 283440623 49% (CPU 0)
usertask 142791054 24%

IDLE1 145004887 25% (CPU 1)
heartbeat 6661 <1%

timer _evt task 194739 <1%

Tmr Svc 55 <1%

control_task 60360 <1%

esp_timer 209 <1%

ipcO 10215 <1%

main 95764 <1%

log_task 13490 <1%

ipc1 15121 <1% (inter process comm?)

=>» Starving the “"idle” process (will cause a crash -wdt).
= Make sure every process has vTaskDelay() for a lower priority process to run

CP6- Closed Loop Track with Velocity Control 3/12

Set up a figure 8* track. Use 1 meter string with chalk attached to make circles,
and connect with tangent lines, and 60 degree crossing. Use white masking
tape for figure 8 if on light background, or black tape if on light background.

C6.1 Show car driving the figure 8, at speed of 1 m/sec or better. (May be
lower for small circle.)

(You may use a wireless command to tell the car to start or stop running, but no
other commands may be sent to the car.)

C6.2 Submit plots on one graph: steering angle command (degrees or radians),
track error (cm), ESC command (% full speed), sensed velocity, all versus time
axis in seconds.

C6.3 All members must fill out the checkpoint survey before the checkoff close.
Completion is individually graded.

*If you do not have space for a full size figure 8, use smaller than 1 m radius to fit.
If you do not have room for a figure 8, use a circle of up to 1 m radius.

(example Amazon tape): https://www.amazon.com/Removable-Painters-Painting-Labeling-
Stationery/dp/B082R27TP6/ref=sr_1_77?dchild=1&keywords=1+inch+white+masking+tape&qid=1613947385&s=i
ndustrial&sr=1-7

Time Spent
CP5 _ Velocity control

cr, I cemers

0 5 10 15 20 25
B Mean hours M std. dev.

If you are stuck on one thing for more than 4 hours, it is time to ask for help
such as Piazza, office hours, or email for extra help.

People have very different backgrounds, so time varies widely
(4-40 hours CP5)

If you are spending more than 10 hours, asking for advice in office hours
should be productive rather than figuring everything out by yourself.

HW 1 notes

Crossing Algorithm on test data

HW1 Spring 2021

Track Section

) 500 1000
Track Center

) 500 1000

) 500 1000
Cross Found

) 500 1000

Time

EECS192 Lecture 7
Motor Modelling and Steering Introduction
Mar. 2, 2021

Topics
* Checkpoint 5: feedback
* Checkpoint 6: closed-loop control
* Time spent survey
« HW 1 Notes
mmmm) « PWM for motor drive/MOSFET intro
« Steering control |l
 Embedded Issues: deadlock

PWM and Motor Drive Motor Electrical Model

m
O—"AN—
+ +
Motor Electrical Model R
Back EMF Vm m <e> Ve
Motor electromechanical behavior - -

O

Also- see motor worksheet......
https://inst.eecs.berkeley.edu/~ee192/sp21/docs/motor-worksheet.pdf

_ Torque equation: T = K_ i,
im=VBAT—ke em _ _ .
R Back EMF equation: V, = K_0,,

m

C.OHC|US|0|T Motor Resistance?
<i,>=7? Peak current?

PWM and Motor Drive

Motor Electrical Model
Back EMF

Motor electromechanical behavior -

Also- see motor worksheet......

im = VBAT— ke e.m
R

m

Conclusion:
<i,>=7?

Motor Electrical Model

m
O—"\NAN—
+ +
R
Vi, m (o) V,
O
+Vaar
+ , O]——
Vi { O &
-) D—D +
s (5 Vs
Motor Resistance? Vgs [S -

Peak current?

PWM Issues for Motor

PWM for Main Motor control

<i,>=(T/T,) |

max

IS | constant?

max

10

H Bridge Concept

\

54/1

X Iforward S3 / ZX

S1 S2 S3 S3 Function?
Off Off Off Off

On Off Off On

Off On On Off

On On Off Off

On Off On off

Off On Off on

11

Practice Q2 (3/9)

https://inst.eecs.berkeley.edu/~ee192/sp21/files/motor-worksheet-soln.pdf

Consider a DC permanent magnet motor (as used in your car).

The car is initially at rest. The motor is connected as shown below.
Neglect battery and switch resistance. Neglect motor inductance. Assume
diode is ideal.

Assume motor resistance = 0.2 ohm, and that the car accelerates to 4
m/s in 2 seconds.

Assume back EMF constant is 1V/(m/s).

Assume time constant for deceleration is 1 second.

Switch turns on at 0 sec, off at 2 sec.

Complete the sketches below for motor current i_,, motor voltage V_,, and
car velocity. i

ChL wb Ok
O L =

Motor model

Motor connection

12/19

EECS192 Lecture 7
Motor Modelling and Steering Introduction
Mar. 1, 2021

Topics

* Checkpoint 5: feedback

* Checkpoint 6: closed-loop control

* Time spent survey

« HW 1 Notes

« PWM for motor drive/MOSFET intro

mmmm) © Steering control ||
« Embedded Issues: deadlock

Bicycle Steering Model

More detailed models see: https://inst.eecs.berkeley.edu/~ee192/sp15/refSteer.html

Y A

Bicycle Steering Model-linearized

e

zp = Veos(6(t))

o = —Vsin(0(t)) . . .
= QOriginal non-linear equations

o — %mn((S(t))

Yo = Yp — Lsin(0(t)) —

Assume small angle, constant V:

Up ~ =V Command Lateral
.V angle error
A 50 | geve | Y40
Ya = Yp — LO=-V6— L6 model
_V?2

15

Bicycle Steering Model

Proportional control:
5(t) = kpya(t)
v |
g N\ Command Lateral
................................ ROAD/'O angle
i — — 2 error
o(t) . Yalt)
Bicycle @
- >
> kp model

Check angle in your car, check sign of kp...

Bicvcle Steering Model

Proportional control:
0(t) = kpya(?)

_V?
Ya = 7

5(t) — Vo(t).

Laplace transform:
s2Y(s) + V k, s Y(s) + (V2/L) k, Y(s) =

+s y(0)+y’(07) +V k,y(0°) (initial conditions)

Eigenvalues:

1% Ak,
)\172 — 5 (kp ji \/k% — T)

Steering Control overview

; RC servo
reierence .
input error Steering command output
Controller _ Car _
() 4\ U u(®) dynamics y(©)
grid 8 pixels
Sensor -

Lateral error

Offset from track
r(t) =0 (mostly)
Where might offset be useful?

Check sign for kp....

Proportional control:
u = kp*e = kp* (r-y);

Proportional + derivative control:
u = kp*e + kd * y dot;
y_dot = (y - y_old)/T;

Proportional + integral control
u = kp*e + ki * e sum;
e sum = e sum + €;

Bicycle Steering Control- proportional control

reference
input CITor

L3
@ T U

Controller

control

input

u(t)

Plant

output

ys(t)

Proportional control:

Sensor

A

"y(1)

r=0 (to be on straight track)
0=u = k,"e

Note: steady state error

Note steady state error:
car follows larger radius

Bicycle Steering Model

Proportional control: §(t) = k,y, (%)

Ja + VEpya(t) +

Eigenvalues:

Critical damping: A, = A, =
ko2 =4 k,/L ork,=4/L=4/0.3 m=13rad/m =760 deg/m
At 2 m/s, doesn’t work well- servo saturates, also simulation dynamics...

lat err (m)
ob o
ook

")

angle (deg)
¥

oo0o
T

2 mls kIo =800 deg/m Kd =0

‘/2

1% | Ak,
)\172 = 5 (kp +]ﬂg — T)

1 m/s kp =800 deg/m Kd =0

velocity (m/s})
o N OB

T T . £ 0.2 ; . ;
i ™~ TN VAR lat err | :,_:’ 0 _f\ . lat err
L S S ~ =] o Ay
| | | | (_"E -0.2 1 I I 1 | |
0 2 3 4 5 6 0 1 2 3 4 ‘ 5 6 7 8 9
Time (s) 5 Time (s)
@ T T T I T
T r—— =T - 20r " _
o AN N [‘] \ | Steering ang|e|' E 2([)] g ‘_‘_}[_\VA ,\J —— Steering angle|
V \-fl U l I ‘ i J) g) - L L 1 1 L 1 1
i 0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 Ti
. i ime (s)
Time (s) z,
| | I =] =
|l %
/ 9 0 / L L 1 I
. . ' L 20 1 2 3 4 5 6 7 8 9
2 3 4 5 6 Time (s)
Time (s)

PD control motivation

3 m/s

_)
Proportional control 3=u = k*e l\A
e="7

Desired behavior

Typical proportional
control behavior

PD parameters

3 m/s

Step: 15 cm. Speed 3 m/s

Choose step response 1m ~ 300 ms

Then lateral velocity = 15 cm/300 ms = 0.5 m/sec
At mid point:

0=0=kp 7.5cm + kd 0.5 m/sec = kd ~[0.15 sec] kp

reference
input cIror

-z
O e(®)

Controller

Steering Control- PD

control
input

u(t)

Plant

output

ys(t)

Sensor

Example under-damped steering:

lateral error (m)

0.2

0.1

=

-0.1

-0.2

Ty(D)

time (sec)

Proportional + Integral

reference con trol
input error input output
> .| Controller . Plant _
SO o i H 10

Sensor

ys(t)

Proportional + Integral

reference QOHU‘OI
input error Input output

Controller Plant

ft) 4 G u®w] H "y(©)

Sensor

ys(t)

P+| control: delta =kp e + ki (integral e)
P control: delta = kp e

Anti-windup needed here

Feedforward

output

reference QOHU‘OI
input error input
3 Controller Plant
L e()) ™
grid 8 pixels
Sensor

ys(t)

Ty

time

Proportional + derivative control.
Kp = 4000 deg/m, 70 rad/m
Kd = 1000 deg/(m/sec)

1
-~ o
e I s R

lat err (m)

o
oo

angle (deg)
S

velocity (m/s)
Lo B L T 8

V=3 m/s, slew rate 600 deg/0.16 sec
NOTE: = bang-bang!
What is problem with bang bang?
Break servo, nonlinear (unstable)

A VYN AWVAWNV I =="T"
gl o ~4 v ¥ s ~ v L4 LY
1 2 3 4 5 6 7 8 9
Time (s)
1 2 3 4 5 6 7 8 9
Time (s)
B velocity | |
1 2 3 4 5 6 7 8 9

i
o -
e S B

lat err (m)

]
oo

angle (deg)
S

velocity (m/s)
o N R

Proportional + derivative control.

Kp = 200 deg/m,

Kd = 30 deg/(m/sec) = (0.15 sec) Kp
V=3 m/s, slew rate 600 deg/0.16 sec
NOTE: = not bang-bang

/-

N~ lat err
0 1 2 3 4 5 6 7 8
Time (s)
i “ . ﬁ Steering angle | |
LJ
i | | IW | | w w i
0 1 2 3 4 5 6 7 8
Time (s)
i / e T e \fElDCity’ |
0 1 2 3 4 5 6 7 8

Kp = 200 deg/m, Kd = 30 deg/(m/sec). V=3 m/s

fg 0.2 T T T T T T T
P 0 J______,/*-/\’-_\/_'/\ / lat err
o
-Ei. _02 1 1 1 1 1 1 1 1
- 0 1 2 3 4 5 6 7 8
S Slew 600 deg/160 ms
S 20 |
5 -20
<
o 0 1 2 3 4 5 6 7 8
@ Time (s)
E 4 T T T T T T T
ol / |
B 0 | 1 1 | | | | 1
2o 1 2 3 4 5 6 7 8
Time (s)
€ 0.2 . . : .
£ 0 N A~ AN lat err
> A"l
"(.E _02 | | 1 |
- 0 2 4 6 8 10
T
5 me) Slew 60 deg/160 ms
A=) 28 - v P [(_‘\. ‘ Steering angle‘_
- .y r v) o
2 20l | | e VARV AE
c
© 0 2 4 6 8 10

Time (s)

velocity | |

o

[
I
(o>}
co
-
o

velocity (m/s)
o N A

EECS192 Lecture 7
Motor Modelling and Steering Introduction
Mar. 2, 2021

Topics
* Checkpoint 5: feedback
* Checkpoint 6: closed-loop control
* Time spent survey
« HW 1 Notes
« PWM for motor drive/MOSFET intro
« Steering control |l
mmmm) « Embedded Issues: deadlock

C.0.P. Watchdog timer

* Despite extensive software and hardware
testing, faults will still occur in real devices.
Even momentary noise spikes on a power
supply can lock up a processor occasionally.
Such events will occur on the power grid
several times a year. Watchdog timers provide
a last line of defense to prevent system failure
with minimal hardware cost.

* https://developer.mbed.org/cookbook/Watch
Dog-Timer

ESP32 Watchdog

The Interrupt Watchdog is responsible for detecting instances
where FreeRTOS task switching is blocked for a prolonged period
of time. The TWDT is responsible for detecting instances of tasks
running without yielding for a prolonged period.

Neither critical sections or interrupt handlers should ever block
waiting for another event to occur.

This is a symptom of CPU starvation and is usually caused by a
higher priority task looping without yielding to a lower-priority task
thus starving the lower priority task from CPU time. This can be
an indicator of poorly written code that spinloops on a peripheral,
or a task that is stuck in an infinite loop.

The TWDT is built around the Hardware Watchdog Timer in Timer
Group 0.

* TIMGn_Tx_INT_WDT _INT: Generated when a watchdog timer
interrupt stage times out.

Resource sharing, e.g. printf, timer

Log add uses queue, so only access to UART is from

xQueueReceive (log queue, log,
PO rtMAX_DE LAY) ;

printString (log) ;

Note: if using multiple printf() in different tasks, can
contend for UART

Standard practice: Have access to each peripheral
only through a single handler function, with queues for
communication.

Non-blocking print
https://github.com/ucb-ee192/SkeletonHuzzah32

snprintf (log, sizeof(log),
"Tdle. sum of cos = %d \n", (long) ZSum) ;
log add(log); € ifsnprintfis too slow, can use itoa(), etc

#define WIFILOG // choose UDP instead of UART
void log add(char *log)

{ xQueueSend(log queue, log, 0);

// send data to back of queue,

// non-blocking, wait=0 ==> return
immediately 1f the queue 1s already full.

J

static void uart log task(void *pvParameters)

{
xQueueRece1ive (log queue, log, portMAX DELAY);

Peripheral Sharing

Embedded Flash
| Bluetodth ' Bluetooth RF
SLI carkmlior baseband receive <l
\ J \ J Clock 2 |35
tor = 8
L 12C genera &
e Wi-Fi
125 Wi-Fi MAC baseband il . St
- transmit
L —
L SDIO \ g % J .
UART o AU memony Cryptographic hardware
“ 2 (or 1) x Xtensa® 32- acceleration
CAN bit LX6 Microprocessors J
: | SHA || RSA |
ETH
. ROM SEAM
IH L b v, A AES o A\ RNG o
PWM
2 RTC
L Touch sensor
ULP Recovery
L DAC E CO-processor memory

ADC

o

L8

) .

PRO_CPU

Doy

-

Embeddead
Memory

Cache

WKL

External
Marmaory

Pearipheral

APP_GPU

Timer Registers- Sharing

Timer 1 configuration and control registers

TIMGn_T1CONFIG_REG Timer 1 configuration register
TIMGn_T1LO_REG Timer 1 current value, low 32 bits
TIMGn_T1HI_REG Timer 1 current value, high 32 bits

TIMGn_T1UPDATE_REG
Write to copy current timer value to TIMGn_T1_(LO/HI) REG

TIMGn_T1ALARMLO_ REG Timer 1 alarm value,
TIMGn_T1ALARMHI _REG Timer 1 alarm value, high 32 bits
TIMGn_T1LOADLO_REG Timer 1 reload value, low 32 bits

TIMGn_T1LOAD_REG
Write to reload timer from TIMGn_T1 (LOADLOLOADHI) REG

DindA,

» Embedded .
Memory
—b-l Cache |-l—
PRO_CPU + APP_CPU
| ML |

External
Marmary

e
4(Paripharal }7

L 4

Timing execution time

timer_get counter_value(TIMER_GROUP_0O, TIMER_ O,
&task counter value0);

[routine to time goes here]

timer_get _counter_value(TIMER_GROUP_0O, TIMER_O,
&task counter valuel);

runtime = ((double) (task_counter_valuel-task counter value0O) / TIMER_SCALE);

// do floating point after timing

snprintf(log, sizeof(log), “tick=%8.3f milliseconds (s)\n",
1000*(runtime));

Timer mutex (mutual exclusion)

esp_err_t timer_spinlock_take(timer_group t group _num)

Take timer spinlock to enter critical protect.

Return
*ESP_OK Success
ESP_ERR_INVALID ARG Parameter error

Parameters
sgroup_num: Timer group number, 0 for TIMERGO or 1 for TIMERG1

esp_err_t timer_spinlock_giveitimer _group t group _num)

Give timer spinlock to exit critical protect.

Return
*ESP_OK Success
ESP_ERR_INVALID ARG Parameter error

Parameters
egroup_num: Timer group number, 0 for TIMERGO or 1 for TIMERG1

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/timer.html?highlight=spinlock#_CPPv413timer_group_t
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_err.html#_CPPv49esp_err_t
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/timer.html?highlight=spinlock#_CPPv413timer_group_t

Timer interface- sharing

https://qithub.com/espressif/esp-idf/blob/release/v4.2/components/driver/timer.c

Vanilla FreeRTOS implements critical sections with taskENTER _CRITICAL()
which calls portDISABLE _INTERRUPTS()

Note: disabling interrupts is not sufficient — as other core can still interrupt

#define TIMER ENTER CRITICAL (mux) portENTER CRITICAL SAFE (mux) ;
#define TIMER EXIT CRITICAL (mux) portEXIT CRITICAL SAFE (mux);
static portMUX TYPE timer spinlock[TIMER GROUP MAX] =

{portMUX INITIALIZER UNLOCKED, portMUX INITIALIZER UNLOCKED};

esp err t timer get counter value(timer group t group num,
timer idx t timer num, ulinto4 t *timer val)

{ ..

TIMER ENTER CRITICAL (&timer spinlock[group num]) ;

timer hal get counter value (
& (p timer obj[group num] [timer num]->hal),
timer val);

TIMER EXIT CRITICAL(&timer spinlock[group num]) ;

return ESP OK;

}

https://github.com/espressif/esp-idf/blob/release/v4.2/components/driver/timer.c

Deadlock

Task1 wants yMutex

Task1 Task?

Hold(xMutex) Hold(yMutex)

TaskZ wants xMutex

Deadlock Example

Possible Task1 and Task2 both block
(May be safer to use interrupt if only a single processor...)

Example: xSemaphoreCreateBinary()
See https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
api-reference/system/freertos.htmi?highlight=priority%20inheritance

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

Deadlock- print example
(from Mastering_the_FreeRTOS_Real Time_Kernel-A_Hands-On_Tutorial_Guide.)

3 - Task 2 attempts to take the mutex, but the mutex is still held by AN
Task 1 so Task 2 enters the Blocked state, allowing Task 1 to
execute again.

2 - Task 1 takes the mutex and starts to r
write out its string. Before the entire string '

5 - Task 2 writes out its string, gives back the %
j semaphore, then enters the Blocked state to wait
f for the next execution time. This allows Task 1 to

has been output Task 1 is preempted by the r.-’: run again - Task 1 also enters the Blocked state to
higher priority Task 2. - { wait for its next execution time leaving only the Idle

Y task to run.

Task 2
Task 1

Idle k\\ L

ﬂ Time

4 - Task 1 completes writing out its string, and gives
back the mutex - causing Task 2 to exit the Blocked
state. Task 2 preempts Task 1 again

1 - The delay period for Task 1 expires so
Task 1 pre-empts the idle task.

Deadlock

(from Mastering_the_FreeRTOS Real Time_Kernel-A_Hands-On_Tutorial_Guide.

2 - The HP task attempts to take the mutex [\

| i 4 - The MP task is now running. The HP |
E;‘ EARL fmcaliEe K is SR heing ek oy i task is still waiting for the LP task to return
task. The HP task enters the Elocked the mutex, but the LP task is not even
state to wait for the mutex to become B s |
available. g 5
High priority task [HP] o /
Medium priority task [MP] :
Low priority task [LP] = me—t Yot
‘./ 1‘1
/T1 Til'l"]é1
b |
gt '1

1- The LP task takes a mutex before being
preempted by the HP task.

3 - The LP task continues to execute, but
gets preempted by the MP task before it

gives the mutex back.

Figure 66. A worst case priority inversion scenario

Deadlock

(from Mastering_the_FreeRTOS Real Time_Kernel-A_Hands-On_Tutorial_Guide.

4 - The LP task returning the mutex causes the HP task to
exit the Blocked state as the mutex holder. When the HP
task has finished with the mutex it gives it back. The MP
task only executes when the HP task returns to the Blocked
state so the MP task never holds up the HP task.

2 - The HP task attempts to take the mutex but can't
because it is still being held by the LP task. The HP task
enters the Blocked state to wait for the mutex to become

available. /
Righ priority task [HP]
Medium priority task [MP] e
Low priority task [LP] | —
K___,,,.f-f""t‘f Timéyx

1- The LP task takes a mutex before being 3 - The LP task is preventing the HP task from executing so inherits
preempted by the HP task. the priority of the HP task. The LP task cannot now be preempted by

the MP task, so the amount of time that priority inversion exists is
minimized. When the LP task gives the mutex back it retums to its
original priority.

Figure 67. Priority inheritance minimizing the effect of priority inversion

EECS192 Lecture 7
Motor Modelling and Steering Introduction
Mar. 2, 2021

Topics

* Checkpoint 5: feedback

* Checkpoint 6: closed-loop control

* Time spent survey

« HW 1 Notes

« PWM for motor drive/MOSFET intro
« Steering control |l

 Embedded Issues: deadlock

Extra Slides

Encoder GPIO

Interrupt handler

control_task
(pri 5, delay 1000)

Heartbeat
(pri 1, delay 1000)

Wifi_log_task
(pri 1, delay 10)

User task
(pri 0, 100)

Skeleton Tasks with interrupt

H calculate
‘ time since

last edge

Idle

(pri 0)

1000

vTaskDelay(delay / portTICK_PERIOD _MS);

!

1001
FreeRTOS tick

46

Queue Iin FreeRTOS

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. Use http://www.FreeRTOS .org/contact to provide feedback, corrections, and check for updates.

Task A Task B
Queue

int x; int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5
integers. When the queue is created it does not contain any values so is empty.

Task A Task B
Queue
int x; 10 int y;
_ . Send T
x = 10; 4

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously
empty the value written is now the only item in the queue, and is therefore both the value at the back of the
queue and the value at the front of the queue.

Queue Iin FreeRTOS

Task A Task B
Queue

int x; | | | ||%0||10| int y;

x = 20; — Send

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the
queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

Task A Task B
Queue
int x; [| 20 10 int y;
| Receive A
x = 20; \// vy now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Task A H ' Task B
Queue :
int x; L JC JL J[J[20] int y;
x = 20; // y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next if it read from the queue again. The queue now has four
empty spaces remaining.

Figure 31. An example sequence of writes to, and reads from a queue

Control Synopsis

output

reference control
input error input
¥ Controller Plant
r(t) + N e(t Cum H
gria o pixeis

Sensor -

ys(t)

State equations: :C(t) — ax (t) + bu(t)

Output equations: y(t) — cx(t) —+ du(t)

"y(t)

Control Law (P): u(t) — kpe(t) — kp(’]“(t) — ’y(t))

Control Synopsis
Control Law (P): u(t) = kye(t) = k,(r(t) — y(t)).

New state equations:
& = ax + bkye(t) = ax + bk,(r — x) = (a — bky)x + bk,r.
Zero Input Response (non-zero init condx, r(t)=0):
x(t) = z(0)el*) for t>0.
a=a-bk, b’ =Db k,

Total Response (non-zero init condx) by convolution:

(t,) = e?tox +/ @t~ Y (1) dr (10)

Step Response (zero init condx) by convolution: 0

_blea’to o b .
¢ k5 —a(l—e toy (11)

to ' /
x(t,) = b’/ et loeT " Tdr =
0

Control Synopsis

Control Law (P): u(t) = kye(t) = k,(r(t) — y(t)).

New state equations:

& = ax + bkye(t) = ax + bk,(r — x) = (a — bky)x + bk,r.

Zero Input Response (non-zero init condx):

x(t) = z(0)el*) for t>0.
a=a-bk, b’ =Db k,

Total Response (non-zero init condx) by convolution:

(t,) = e?tox +/ @t~ Y (1) dr

Step Response (zero init condx) by convolution:

!/
_blea to —a bl
€

to ' /
x(t,) = b’/ et loeT " Tdr =
0

a’ a’

=1 —em).

(10)

(11)

Control Synopsis- Discrete Time

Superposition of Step Responses discrete time input _I_Il_

u(kD) T | T T >
0 T 2T 3T 4T 5T

system response /\/—\
-

y(t) | T T T] T
0 T 2T 3T 4T 5T

(k+1)T
2((k + D)T) = 2D 4(0) 4 ok +DT f e~ bu(r)dr . (15)
0

kT
x(kT) = e 2(0) + e“k’Tf e “Thu(T)dT . (14)
0

T
r((k+1)T) = e“T:E(kT)—I—e“(kH)Tf e “Thu(t)dr = eaT:L’(kT)—I—/ e “bu(kT)d\ , (16)
0

Control Synopsis- Discrete Time

G(I)=eT and H(T)=b fo Do (17)
State equations:
z((k+ 1D)T) = G(T)x(kT) + H(T)u(kT) (18)
Output equations:

y(kT) = Cx(kT) + Du(kT) . (19)

Total Response (non-zero init condx) by convolution:

r(k) = G*2(0) + f GFI=1 Hu(j) . (23)

3=0

Control Synopsis- Discrete Time

Control Law (P): U(KT) = k, [r(KT) - x(KT)]

New state equations:

o((k+ 1)7T) = G(T)a(kKT) + H(T)k,(r(kT) — 2(kT)) = [G — Hk,Ja(kT) + Hk,r(kT) . (24)

2((k+1DT) = [e"" + %(1 — e"NNa(kT) + Hkyr (kT) = G'x(kT) + Hk,r(KT) . (25)
For stability:
e — %(eaT — 1) < 1. (26)

Notes: stability depends on gain and T!

Discrete Time Control

ulk] = kp*(r[k]-x[k])

Time Series Plot:unnamed

time

On board

V-rep simulation

:ﬂo: % ‘% c%a @cﬁ %‘Iﬂ @ {f—t! 0 |ope = | Acarste (default}_'| ;

=l
Selected ohjects]
Simulation time: 00:00:30.66 (c=10.0 ms)

-]
7]
&

@

[
=
=
=
I~
@
&
&
@
&

V-rep simulation

g I T T
= D'(zl ;—v—"hvw.&%?_/’ lat err
E -83 : ' l !
@ -0.
0 5 10 15
— Time (s)
(@)
m |
E” 28] ;.,’—/\ — n A NN /‘r\ N Steering angle j
s W
2 -20] AL \/\/\/“ ,
0 10 15
© Time (s)
54] T I .
22¢F — s — velocity | |
E 0 ! 1 ,
> 0 5 10 15

