EECS 192: Mechatronics Design Lab Discussion 12: AGC & Mechanical Tuning

GSI: Justin Yim

15 & 16 Apr 2015 (Week 12)

Vehicle Dynamics

Suspension Tuning

Ducky (UCB EECS)

Mechatronics Design Lab

15 & 16 Apr 2015 (Week 12)

Vehicle Dynamics

What's the ultimate goal here?

Goals

What's the ultimate goal here?

Reduce race time

How do we do that?

what you want

from Big Rigs: Over the Road Racing

a game that you should never touch

Motivation

Goals

What's the ultimate goal here?

Reduce race time

How do we do that?

- High acceleration speed on straights
- Fast cornering fast through turns
- High deceleration slowing for turns ►

Essentially maximizing acceleration. How?

what you want

from Big Rigs: Over the Road Racing

a game that you should never touch

Motivation

Goals

What's the ultimate goal here?

Reduce race time

How do we do that?

- High acceleration speed on straights
- Fast cornering fast through turns
- High deceleration slowing for turns ►

Essentially maximizing acceleration. How?

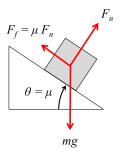
Maximize tire grip!

what you want

from Big Rigs: Over the Road Racing

a game that you should never touch

Simple Friction Model


Let's make some back-of-the-envelope estimates of tire grip and its effects on performance.

- ▶ Simple friction model $F_f = \mu F_n$
- How can we estimate the coefficient of friction?

Simple Friction Model

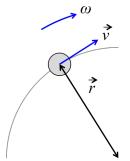
Let's make some back-of-the-envelope estimates of tire grip and its effects on performance.

- Simple friction model $F_f = \mu F_n$
- How can we estimate the coefficient of friction?
- Put your car on a ramp, tip until it slides. Do this! Measure the angle!

- Car model: point mass m on a straight track of length d in gravity g
- Friction model: $F_f = \mu F_n$
- If the car starts and ends at rest, what is the shortest time to drive d? Discuss with your team mates or a partner.

- Car model: point mass m on a straight track of length d in gravity g
- Friction model: $F_f = \mu F_n$
- If the car starts and ends at rest, what is the shortest time to drive d? Discuss with your team mates or a partner.
- ▶ 1) What is its maximum acceleration?

- Car model: point mass m on a straight track of length d in gravity g
- Friction model: $F_f = \mu F_n$
- If the car starts and ends at rest, what is the shortest time to drive d? Discuss with your team mates or a partner.
- ▶ 1) What is its maximum acceleration?
 - $a = \mu g$
 - Depends on tire grip!


- Car model: point mass m on a straight track of length d in gravity g
- Friction model: $F_f = \mu F_n$
- If the car starts and ends at rest, what is the shortest time to drive d? Discuss with your team mates or a partner.
- ▶ 1) What is its maximum acceleration?
 - $a = \mu g$
 - Depends on tire grip!
- ▶ 2) How can we express the time in terms of a and d?

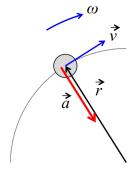
- Car model: point mass m on a straight track of length d in gravity g
- Friction model: $F_f = \mu F_n$
- If the car starts and ends at rest, what is the shortest time to drive d? Discuss with your team mates or a partner.
- ▶ 1) What is its maximum acceleration?
 - $a = \mu g$
 - Depends on tire grip!
- ▶ 2) How can we express the time in terms of a and d?

•
$$\frac{d}{2} = \frac{1}{2}a(\frac{t}{2})^2$$

 $t = 2\sqrt{\frac{d}{\mu g}}$

Now let's look at a simple model for cornering

- Car model: point mass m in constant-speed circular motion
- What are the acceleration and force vectors?

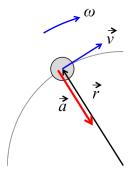


Now let's look at a simple model for cornering

- Car model: point mass m in constant-speed circular motion
- What are the acceleration and force vectors?

•
$$a = -\omega^2 \vec{r} = -\frac{v^2}{r} \hat{r}$$

$$\blacktriangleright F = -m\omega^2 \vec{r} = -m\frac{v^2}{r}\hat{r}$$

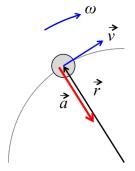

Now let's look at a simple model for cornering

- Car model: point mass m in constant-speed circular motion
- What are the acceleration and force vectors?

$$\bullet \ a = -\omega^2 \vec{r} = -\frac{v^2}{r} \hat{r}$$

$$\blacktriangleright F = -m\omega^2 \vec{r} = -m\frac{v^2}{r}\hat{r}$$

• What's the maximum v for r = 1 m and $\mu = 1$?


Now let's look at a simple model for cornering

- Car model: point mass m in constant-speed circular motion
- What are the acceleration and force vectors?

•
$$a = -\omega^2 \vec{r} = -\frac{v^2}{r} \hat{r}$$

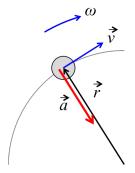
• $F = -m\omega^2 \vec{r} = -m\frac{v^2}{r} \hat{r}$

What's the maximum v for r = 1 m and µ = 1?

•
$$\mu mg = m \frac{v^2}{r}$$

 $v = \sqrt{\mu gr}$
 $v = 3.1 \text{ m/s}$

Now let's look at a simple model for cornering


- Car model: point mass m in constant-speed circular motion
- What are the acceleration and force vectors?

$$\bullet \ a = -\omega^2 \vec{r} = -\frac{v^2}{r} \hat{r}$$

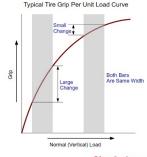
$$\bullet \ F = -m\omega^2 \vec{r} = -m\frac{v^2}{r} \hat{r}$$

What's the maximum v for r = 1 m and µ = 1?

•
$$\mu mg = m \frac{v^2}{r}$$

 $v = \sqrt{\mu gr}$
 $v = 3.1 \text{ m/s}$

 Simple models aren't perfect, but they're a good start to figure out what's possible.


Tire Grip Curves

Now let's look at more detailed models:

Tire Grip vs. Load Curve

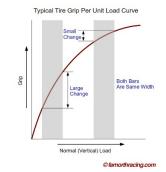
- Tire grip is nonlinear with load
- Diminishing returns with more pressure

So I have 4 tires - what's the optimal distribution?

© farnorthracing.com

tire grip curve from (link)

Tire Grip Curves

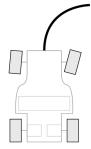

Now let's look at more detailed models:

Tire Grip vs. Load Curve

- Tire grip is nonlinear with load
- Diminishing returns with more pressure

```
So I have 4 tires - what's the optimal distribution?
```

- Completely even
- Don't trade a loss of larger amount of grip for a gain of smaller amount of grip




```
tire grip curve from
(link)
```

Lateral Weight Transfer

And a more detailed car model with four wheels:

What happens to my effective weight distribution when turning? assume stiff suspension for simplicity analysis with springs much more involved

direction of travel

Lateral Weight Transfer

And a more detailed car model with four wheels:

What happens to my effective weight distribution when turning? assume stiff suspension for simplicity analysis with springs much more involved

- Inward turning force from wheels
- Applies torque, rolling to outer side of turn
- Increases pressure on outer wheel
- Decreases pressure on inner wheel

So total grip reduced - how to fix?

direction of travel

weight transfer

Lateral Weight Transfer

And a more detailed car model with four wheels:

What happens to my effective weight distribution when turning? assume stiff suspension for simplicity analysis with springs much more involved

- Inward turning force from wheels
- Applies torque, rolling to outer side of turn
- Increases pressure on outer wheel
- Decreases pressure on inner wheel

So total grip reduced - how to fix?

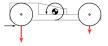
- Note lever effect of turning force
- Shorten height to reduce torque

direction of travel

weight transfer

Weight Transfer

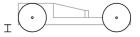
Longitudal Weight Transfer


What happens to my effective weight distribution when accelerating?

Weight Transfer

Longitudal Weight Transfer

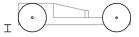
What happens to my effective weight distribution when accelerating?


- Acceleration force produced at rear wheel
- Applies torque pitching up
- Increases traction on rear wheels
- Decreases grip on steering wheels

Tuning Ride Height

Ride height: distance between track surface to underside of chassis

We know lower center-of-gravity minimizes weight transfer. What are the limits?


ride height

Tuning Ride Height

Ride height: distance between track surface to underside of chassis

We know lower center-of-gravity minimizes weight transfer. What are the limits?

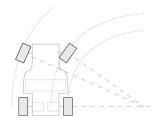
- Need to clear uneven surfaces
- Don't drag your chassis

ride height

Ackermann Steering

Let's look more closely at your car's steering.

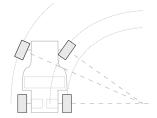
You may have noticed that your wheels aren't parallel when turning. Why?



Ackermann Steering

Let's look more closely at your car's steering.

You may have noticed that your wheels aren't parallel when turning. Why?

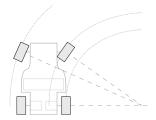

- Different turn radius for inner/outer wheels: it's equivalent to two bicycle steering models glued side-by-side.
- Ackermann steering: angular difference between inner and outer wheels for different turn radius
- A result of the different lengths / angles of steering linkages

Slipping

Given the Ackermann steering geometry...

What happens if the front wheels slip?

Steering


Slipping

Given the Ackermann steering geometry...

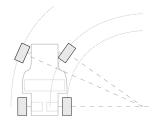
What happens if the front wheels slip?

- Understeer: turns less than intended
- Turning radius increased

What happens if the back wheels slip?

Steering

Slipping


Given the Ackermann steering geometry...

What happens if the front wheels slip?

- Understeer: turns less than intended
- Turning radius increased

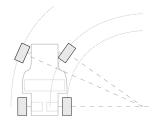
What happens if the back wheels slip?

- Oversteer: turns more than intended
- Turning radius decreased

Steering

Slipping

Given the Ackermann steering geometry...


What happens if the front wheels slip?

- Understeer: turns less than intended
- Turning radius increased

What happens if the back wheels slip?

- Oversteer: turns more than intended
- Turning radius decreased

What sensors might you use to tell the car is slipping? Sideways? Accelerating/braking?

Suspension Tuning

Make sure your electronic hardware is working first. This suspension tuning is icing on the cake in comparison.

Disclaimer

- Justin's research is with legs, not wheels
 - I've tuned exactly zero cars
- These slides were made in a previous year with information from various Internet sources, which hopefully is correct
 - (it passes the "smell test")
- If it sounds wrong, it might really be...

not actually that bad

Camber: angle between wheel and vertical (from front)

- Positive if tilting outwards
- Negative if tilting inwards

What's optimal to maximize contact area?

positive camber

negative camber

Camber: angle between wheel and vertical (from front)

- Positive if tilting outwards
- Negative if tilting inwards

What's optimal to maximize contact area?

► 0 degree, ideally

But need to account for turning chassis roll

	$\left(\right)$	
H		

Camber: angle between wheel and vertical (from front)

- Positive if tilting outwards
- Negative if tilting inwards

What's optimal to maximize contact area?

► 0 degree, ideally

But need to account for turning chassis roll

- Increases camber angle during turns
- So slightly negative camber (-1°to -4°) to increase traction when cornering

Camber: angle between wheel and vertical (from front)

- Positive if tilting outwards
- Negative if tilting inwards

What's optimal to maximize contact area?

► 0 degree, ideally

But need to account for turning chassis roll

- Increases camber angle during turns
- So slightly negative camber (-1°to -4°) to increase traction when cornering

camber effects from turning

Caster

Caster: angle between steering axis and vertical

 Positive when steering axis line intersects road ahead of contact patch

What are the stability effects of positive caster? think shopping cart "caster" wheels

Caster

Caster: angle between steering axis and vertical

 Positive when steering axis line intersects road ahead of contact patch

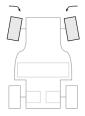
What are the stability effects of positive caster? think shopping cart "caster" wheels

- Self-centering effect
 - Contact patch "trails" steering axis
- Typically 3°to 5°recommended
 - Less may increase steering at stability cost
- Overall effect is fairly small

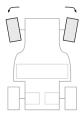
caster

self-centering effect

Toe


Toe: angle between wheels, viewed from top

- ► Toe-in (positive): inwards towards front
- Toe-out (negative): outwards towards front


Effects of toe:

- Toe-in provides straight-line stability
- Toe-out provides better turn-in but amplifies disturbances
- Small changes produces noticable effect
- Recommended range (front): -3°to 1°

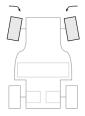
Why might toe be bad?

toe-in

toe-out

Toe

Toe: angle between wheels, viewed from top


- ► Toe-in (positive): inwards towards front
- ► Toe-out (negative): outwards towards front

Effects of toe:

- Toe-in provides straight-line stability
- Toe-out provides better turn-in but amplifies disturbances
- Small changes produces noticable effect
- Recommended range (front): -3°to 1°

Why might toe be bad?

Wheels rub against road - reduces tire life

toe-in

toe-out

Benchmarking

Obviously, what matters in the end is measurable performance

So, what are some ways to measure success?

Benchmarking

Obviously, what matters in the end is measurable performance

So, what are some ways to measure success?

- Straight-line acceleration
- Maximum cornering velocity
- Minimum cornering radius

We've typically had less experience with mechanical tuning

- Try to benchmark and measure results
- Have a known-good configuration
 - "The better is the enemy of the good"
- Sensor and control algorithms important

Summary

Summary

- Maximize grip to maximize acceleration to reduce track times
- ► Tune camber (slightly negative), caster (slightly positive), toe
- Lower center of gravity: minimize weight transfer
- Measure, measure, measure
- ► Many topics not covered: tires, springs, shocks, sprung roll

(Possibly) one more discussion section left

Any topics people want to see?