
EECS 192: Mechatronics Design Lab
Discussion 8: GDB Debugging

GSI: Andrew Barkan

10 Mar 2019 (Week 8)

1 GDB and Core Dump

2 GDB Demo

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 1 / 13



GDB and Core Dump

GNU Debugger

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 2 / 13



GDB and Core Dump

Debugging

I General idea: locate bugs in your program
by stopping it at particular points and
looking at values

I GDB (gdb) ”GNU Debugger” for C, C++,
and other languages:
I GDB should already be installed w/

ESP-IDF)
I Run GDB script with core dump
I Examine program with GDB

I (Documentation link)
What’s wrong with my

code?

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 3 / 13

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/core_dump.html


GDB and Core Dump Debug Preparation

Setting Up GDB

I You may have to set your paths to run from terminal
I Alternatively, you can run the ESP-IDF export script after opening a

new terminal
I Navigate to /.platformio/packages/framework-espidf
I Run the export script (On Windows => export.bat)

I The export script may have you run install.bat first

I You should then be able to run the gdb core dump script

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 4 / 13



GDB and Core Dump Debug Preparation

Preparing Your ESP32

I We need to enable core dump
I Compiler config variables

I /.platformio/penv/Scripts/pio.exe run
-t menuconfig

I Make sure you run from your project
folder!

I Take a look at the SkeletonHuzzah32
wiki for more information

Setting compiler config
variables

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 5 / 13

https://github.com/ucb-ee192/SkeletonHuzzah32/wiki/10.-Configuring-Options
https://github.com/ucb-ee192/SkeletonHuzzah32/wiki/10.-Configuring-Options


GDB and Core Dump Debug Preparation

Preparing Your ESP32

I Here are the specific variables you need to set:
I CONFIG ESP COREDUMP TO FLASH OR UART (change to UART)
I CONFIG ESP SYSTEM PANIC PRINT REBOOT or

ESP SYSTEM PANIC PRINT HALT (change to print registers and
halt)

I CONFIG ESP COREDUMP DATA FORMAT (set to ELF)
I Component config -¿ Core dump -¿ ELF format ELF format

(Executable and Linkable Format file for core dump)
I Compile with debugger (default option)

I After setting variables, save (s) and quit (q)

I Restart VS Code and allow CMakeLists to rebuild

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 6 / 13



GDB and Core Dump Debug Preparation

Generating A Core Dump

I Probably already seen a core dump
from serial output

I Big wall of seemingly meaningless
characters (actually base64)

I What if I want to examine a specific
point?
I *((int *) 0) = 0;
I Will cause a panic and core dump!

Some core dump text

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 7 / 13



GDB and Core Dump Using GDB

Processing Core Dump

I When your program generates a core dump, the result is printed to
over UART to whatever serial interface you are using

I Copy and save the core dump to a .txt file

I Remove:
================= CORE DUMP START =================

and
================= CORE DUMP END ===================

from text file

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 8 / 13



GDB and Core Dump Using GDB

Processing Core Dump

Now that we have the core dump saved, we can use the ESP-IDF core
dump script to begin debugging

I Located in
/.platformio/packages/framework-espidf/components/espcoredump

I Here is the command template:

python espcoredump.py dbg_corefile -t b64 -c

</path/to/saved/base64/text > </path/to/

program/elf/file >

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 9 / 13



GDB and Core Dump Using GDB

GDB Commands

I Keep in mind that you are NOT running the program; you’re just
looking at a snapshot taken at the instant of core dump

I Useful commands for debugging core dump with GDB:
I help : Brings up help interface w/ more commands
I help <command> : Gives helpful info on given command
I list : Lists 10 lines around the error line
I list <line #> : Lists 10 lines around the given line #
I bt : Backtrace function calls from error location
I info <subject> : Print out info on given subject (e.g. locals)

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 10 / 13



GDB and Core Dump Using GDB

More GDB Commands

I You can also examine specific frames and variables!
I Some more commands:

I frame <frame #> : Brings you to specified frame #
I print <expression> : Print the value of an expression (e.g. a

variable)
I thread <thread #> : Brings you to specified thread

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 11 / 13



GDB and Core Dump Using GDB

Some Debugging Tips

I When working on new functionality, take small controlled steps
I Start with functional code (make sure it is committed)
I Make small change so that ensuing errors can be isolated

I Math is hard
I Implicit casting and integer math can cause issues
I If debugging math, inspect intermediate values
I e.g. a, b, c, (a + b), c * (a + b)

I Print statements are still useful tools!

I Preemptive error handling can be powerful (even when prototyping)

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 12 / 13



GDB Demo

GDB Example

Andrew (UCB ME) Mechatronics Design Lab 10 Mar 2019 (Week 8) 13 / 13


