1 Linear Quadratic Regulator (LQR)

Consider: Why is it called “Linear Quadratic Regulator”? Consider: What are the inputs, design variables, and outputs of an LQR design problem?

1.1 The Linear Quadratic Regulator

Setup. Consider designing a control policy for a discrete linear time-invariant dynamical system. One way to design a control policy \(u = f(x) \) is to write down a cost function which penalizes the overall state deviation, input, and terminal cost.

LQR Problem. We seek to minimize our cost functional subject to our dynamics constraints:

\[
J(x) = \sum_{k=0}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T P_N x_N
\]

where \(Q, R, P > 0 \), and \(U := \{u_0, u_1, \ldots, u_{N-1}\} \).

1.2 LQR Solution via Dynamic Programming Principle

Let \(* \) denote optimal, not complex conjugate transpose. Consider the Dynamic Programming equations, aka Bellman, aka Hamilton-Jacobi equations:

\[
J(x) = \min u_k \left\{ x_k^T Q x_k + u_k^T R u_k + J(x_{k+1}) \right\}
\]

The above expression gives \(J_k \) recursively, in terms of \(J_{k+1} \). Any minimizing control \(u_k \) gives optimal \(J_k \).

Find recursive form:

1. At final time, we know \(J_N = x_N^T P_N x_N \).
2. By Bellman principle, \(J_k = \min_{u_k} \left(x_k^T Q x_k + u_k^T R u_k + J_{k+1}(x_{k+1}) \right) \).

October 23, 2020

3. We solve for \(u_k \) by taking derivative w.r.t. \(u_k \) and setting to zero (we start omitting \(k \)’s from \(x \) and \(u \) temporarily):

\[
2x_k^T R + 2x_k^T B_k x_{k+1} + P_k = 0
\]

Consider: How do we know taking derivative w.r.t. \(u \) and setting to zero will give us the global optimal solution?

4. Hence optimal control law is:

\[
x_k^* = \arg \min_{x_k} x_k^T Q x_k + \frac{1}{2} x_k^T B_k x_{k+1} \quad \text{By def.}
\]

5. Substitute the optimal control law into the cost function to find the associated optimal cost:

\[
J_k^* = x_k^T Q x_k + \frac{1}{2} x_k^T B_k x_{k+1} - \frac{1}{2} x_{k+1}^T B_k^T \left(R + \frac{1}{2} B_k^T B_k \right)^{-1} B_k x_k
\]

1.3 Summarizing DP Solution

1. Set \(P_N := Q \).
2. For \(k = N-1, \ldots, 1 \):

\[
P_k := \left(R + \frac{1}{2} P_{k+1} B_k^T B_k \right)^{-1} B_k^T P_{k+1}
\]

3. For \(k = 0, \ldots, N-1 \), optimal \(u_k \) is given by \(u_k^* = -B_k x_k \).

Remarks:

Optimal \(u \) is a linear function of the state (called linear state feedback).

Recurrence for min cost-to-go runs backward in time:

\[
J_k^* = \min_{u_k} \left(x_k^T Q x_k + u_k^T R u_k + J_{k+1}(x_{k+1}) \right)
\]

October 23, 2020

More on Problem 1:

and the cost matrix \(R = \frac{1}{2} \). Let \(x_0 = (1, 1) \) and \(N = 20 \). How do you think the closed-loop sequence \(y(t) \) and control efforts \(u(t) \) for different cost matrices \(Q \) compare?

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

Use MATLAB to simulate the system.

October 23, 2020
1.4 Infinite Horizon DT LQR

If \(N \to \infty \), we can still apply the dynamic programming principle. However, the recursive equation reaches a steady state solution in this case:

\[
\begin{align*}
K_{\infty} &= (R + B^T P_{\infty} B)^{-1} B^T P_{\infty} A \\ P_{\infty} &= Q + R + B K_{\infty} B^T
\end{align*}
\]

This will occur in Eq. 15, but this ARE

1.5 State Afline Systems

Problem 2. Suppose that we have an affine system

\[x_{k+1} = Ax_k + Bu_k + e, \quad k \in \{0, 1, \ldots, N\} \tag{9} \]

Can we design an LQR controller for this open loop system? Here:

Consider the vector \([x_1, x_2, \ldots, x_N]\) and \(Q, R \geq 0\). Note that this gives a linear system of Eq. 15.

1.6 Trajectory Following For LTI Systems

Suppose that now we want to derive a control policy that maintains the deviation of our system’s trajectory from a reference trajectory \((Q^*_{\text{ref}}, u^*_{\text{ref}}), i \in \{0, 1, \ldots, N\} \) (in other words, we want to follow the reference...
trajectory as closely as possible). The cost function in this case is given by:

\[
J(x, u) = \sum_{k=0}^{N-1} \left((x_k - x_{d,k})^T Q (x_k - x_{d,k}) + (u_k - u_{d,k})^T R (u_k - u_{d,k}) \right) + (x_N - x_{d,N})^T Q (x_N - x_{d,N}).
\]

(10)

Problem 3. Derive the optimal LQR control policy and cost-to-go function that minimize (10) subject to the system dynamics in (1). Do we need to make any assumptions about the reference trajectory \((x_{d,0}, x_{d,1}, \ldots, x_{d,N})\)?

2 Extension: Iterative LQR (ILQR), Trajectory Following for Non-linear Systems

What if our dynamical system isn’t linear? Can the ideas from LQR be helpful? Consider designing a control policy for a discrete nonlinear dynamical system:

\[
x_{k+1} = f(x_k, u_k), \quad t \in \{0, 1, \ldots, N\}
\]

(11)

\[x_k = u^\text{ref}.
\]

Assume we have been given a specific state trajectory \(x_{0}^0, x_{1}^0, \ldots, x_{N}^0\) that we want to control our system to. We can control our system along this trajectory if and only if

\[
\exists \delta x_{0}^0, \delta x_{1}^0, \ldots, \delta x_{N-1}^0 \text{ s.t. } x_{k}^0 = f(x_{k-1}^0, \delta x_{k}^0), \forall k \in \{0, N-1\}
\]

Our ILQR problem looks really similar but now we have to consider these nonlinear dynamics constraints:

\[
\min_{u^0} \sum_{k=0}^{N-1} \left((x_k - x_{d,k})^T Q (x_k - x_{d,k}) + (u_k - u_{d,k})^T R (u_k - u_{d,k}) \right) + (x_N - x_{d,N})^T Q (x_N - x_{d,N}).
\]

(13)

Can we leverage anything we learned from working with linear dynamics? Yes! First... Consider: What is the difference between linearizing about an equilibrium point and linearizing about a trajectory?

Let’s transform our nonlinear system into a linear time-varying dynamical system. We will linearize around each of the desired trajectory states, i.e. perform a first-order Taylor expansion around the trajectory:

\[
x_{k+1} = f(x_k, u_k) + \frac{\partial f(x_k, u_k)}{\partial x} (x_k - x_{d,k}) + \frac{\partial f(x_k, u_k)}{\partial u} (u_k - u_{d,k})
\]

(13)

\[x_{k+1} - x_{d,k+1} = A (x_k - x_{d,k}) + B (u_k - u_{d,k})
\]

(14)

\[x_{k+1} = A x_k + B u_k + x_{d,k+1}
\]

(15)

Let’s put to these linearized dynamics into our ILQR problem:

\[
\min_{u^0} \sum_{k=0}^{N-1} \left((x_k - x_{d,k})^T Q (x_k - x_{d,k}) + (u_k - u_{d,k})^T R (u_k - u_{d,k}) \right) + (x_N - x_{d,N})^T Q (x_N - x_{d,N}).
\]

(16)

s.t. \(x_{k+1} = A x_k + B u_k + x_{d,k+1}, \quad t \in \{0, 1, \ldots, N\}\)

Summarizing the ILQR Algorithm.

- until convergence
 - get corresponding state sequence \(x_{0}^0, \ldots, x_{N}^0\) for the current best guess of the optimal control
 - linearize the dynamics by computing a first-order Taylor expansion of the dynamics model
 - use the ILQR backups to solve for the optimal control policy
 - \(x_{0}^0, \ldots, x_{N}^0\) record the best guess of the optimal control policy

Consider: Does our solution to (16) give the global solution? Not necessarily. Our model is still ill. \(x_{d,k} = f(x_{d,k})\) can get stuck at local min.耐久と構造

For more info on LQR derivation: https://stanford.edu/class/ee363/lectures/lqr.pdf
For more practice with implementing LQR: EE221A (fall)
For more practice with ILQR related to stochastic control and robust design: ME233 (spring)