Sent by submarine cable between London and New York, the transportation time was reduced to less than three hours from more than a week.
FIGURE 1.3
Unretouched cable picture of Generals Pershing and Foch, transmitted in 1929 from London to New York by 15-tone equipment. (McFarlane.)
First image of the moon taken by a US Spacecraft.
Major uses

Gamma-ray imaging: nuclear medicine and astronomical observations

X-rays: medical diagnostics, industry, and astronomy, etc.

Ultraviolet: lithography, industrial inspection, microscopy, lasers, biological imaging, and astronomical observations

Visible and infrared bands: light microscopy, astronomy, remote sensing, industry, and law enforcement

Microwave band: radar

Radio band: medicine (such as MRI) and astronomy
(a) Gamma ray: locate sites of bone pathology
(b) PET: patient is given a radioactive isotope that emits positrons as it decays; when positron meets an electron both are annihilated and two gamma rays are given off; two tumors one in brain one in lung
(c) Star in constellation of Cygnus exploded 15000 years ago; generated a superheated stationary gas cloud: natural radiation of the object; The Cygnus Loop is a large supernova in the constellation Cynus;

FIGURE 1.6
Examples of gamma-ray imaging. (a) Bone scan. (b) PET image. (c) Cygnus Loop. (d) Gamma radiation (bright spot) from a reactor valve.
(Images courtesy of (a) G.E. Medical Systems, (b) Dr. Michael E. Casey, CTI PET Systems, (c) NASA, (d) Professors Zhong He and David K. Wehe, University of Michigan.)
(b) Catheter is inserted into an artery or vein in the groin; when Catheter reaches the site, an X ray contrast medium is injected Through the tube, enhancing contrast of blood vessels.
(a) and (b) are Fluorescence microscopy; Mineral flurspar fluoresces when ultraviolet light is directed upon it.
FIGURE 1.9 Examples of light microscopy images. (a) Taxol (anticancer agent), magnified 250×. (b) Cholesterol—40×. (c) Microprocessor—60×. (d) Nickel oxide thin film—600×. (e) Surface of audio CD—1750×. (f) Organic superconductor—450×. (Images courtesy of Dr. Michael W. Davidson, Florida State University.)
FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in Table 1.1. (Images courtesy of NASA.)
<table>
<thead>
<tr>
<th>Band No.</th>
<th>Name</th>
<th>Wavelength (µm)</th>
<th>Characteristics and Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Visible blue</td>
<td>0.45–0.52</td>
<td>Maximum water penetration</td>
</tr>
<tr>
<td>2</td>
<td>Visible green</td>
<td>0.52–0.60</td>
<td>Good for measuring plant vigor</td>
</tr>
<tr>
<td>3</td>
<td>Visible red</td>
<td>0.63–0.69</td>
<td>Vegetation discrimination</td>
</tr>
<tr>
<td>4</td>
<td>Near infrared</td>
<td>0.76–0.90</td>
<td>Biomass and shoreline mapping</td>
</tr>
<tr>
<td>5</td>
<td>Middle infrared</td>
<td>1.55–1.75</td>
<td>Moisture content of soil and vegetation</td>
</tr>
<tr>
<td>6</td>
<td>Thermal infrared</td>
<td>10.4–12.5</td>
<td>Soil moisture; thermal mapping</td>
</tr>
<tr>
<td>7</td>
<td>Middle infrared</td>
<td>2.08–2.35</td>
<td>Mineral mapping</td>
</tr>
</tbody>
</table>

TABLE 1.1 Thematic bands in NASA’s LANDSAT satellite.
FIGURE 1.11
Satellite image of Hurricane Katrina taken on August 29, 2005.
(Courtesy of NOAA.)
• Night time lights of the world data set
• Provides a global inventory of human settlement

FIGURE 1.12
Infrared satellite images of the Americas. The small gray map is provided for reference. (Courtesy of NOAA.)
FIGURE 1.13
Infrared satellite images of the remaining populated part of the world. The small gray map is provided for reference.
(Courtesy of NOAA.)
FIGURE 1.14
Some examples of manufactured goods often checked using digital image processing.
(a) A circuit board controller.
(b) Packaged pills.
(c) Bottles.
(d) Air bubbles in a clear-plastic product.
(e) Cereal.
(f) Image of intraocular implant.
(Fig. (f) courtesy of Mr. Pete Sites, Perceptrics Corporation.)
FIGURE 1.15
Some additional examples of imaging in the visual spectrum. (a) Thumb print. (b) Paper currency. (c) and (d) Automated license plate reading. (Figure (a) courtesy of the National Institute of Standards and Technology. Figures (c) and (d) courtesy of Dr. Juan Herrera, Perceptics Corporation.)
Radar is able to collect data over virtually any region at any time, regardless of weather or ambient lighting conditions;

An imaging radar works like a flash camera: it provides its own microwave pulses to illuminate an area on the ground; Can only see the microwave energy that was reflected back toward the radar antenna.
Example of imaging in the radio band
FIGURE 1.18 Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum. (Courtesy of NASA.)
Example of sound imaging
Cross sectional image of a well known 3D model for comparing seismic imaging algorithms
Ultrasound system transmits high frequency sound pulses into the body
Hit a boundary between tissues: some reflected back, some travel on to hit another boundary and reflected;
Reflected waves picked up by the probe; machine calculates distance from the probe to the tissue boundary

FIGURE 1.20
Examples of ultrasound imaging. (a) Baby. (2) Another view of baby. (c) Thyroids. (d) Muscle layers showing lesion. (Courtesy of Siemens Medical Systems, Inc., Ultrasound Group.)
SEM scans the electron beam and records the interaction of beam and sample at each location; this produces one dot on the phosphor screen. Complete image is formed by a raster scan of the beam through the sample much like a TV camera; electrons interact with a phosphor screen and produce light. SEM magnification can be 10,000X; but light microscope can be at most 1000X.
FIGURE 1.22
(a) and (b) Fractal images. (c) and (d) Images generated from 3-D computer models of the objects shown. (Figures (a) and (b) courtesy of Ms. Melissa D. Binde, Swarthmore College, (c) and (d) courtesy of NASA.)
Outputs of these processes generally are images

CHAPTER 6
Color image processing

CHAPTER 7
Wavelets and multiresolution processing

CHAPTER 8
Compression

CHAPTER 9
Morphological processing

CHAPTER 5
Image restoration

CHAPTER 10
Segmentation

CHAPTER 11
Representation & description

CHAPTER 12
Object recognition

FIGURE 1.23
Fundamental steps in digital image processing. The chapter(s) indicated in the boxes is where the material described in the box is discussed.
FIGURE 1.24
Components of a general-purpose image processing system.