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i FREQUENCY ANALYSIS

= Frequency Spectrum

= Be basically the frequency components (spectral
components) of that signal

= Show what frequencies exists in the signal
= Fourier Transform (FT)

= One way to find the frequency content

= Tells how much of each frequency exists in a
signal




i STATIONARITY OF SIGNAL

= Stationary Signal
= Signals with frequency content unchanged
In time
= All frequency components exist at all times

= Non-stationary Signal
=« Freguency changes in time
= One example: the “Chirp Signal”
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i CHIRP SIGNALS

Frequency: 2 Hzto 20 Hz _ pifferent in Time Domain_ Frequency: 20 Hz to 2 Hz




NOTHING MORE, NOTHING

‘L LESS

= FT Only Gives what Frequency Components Exist in
the Signal

= The Time and Frequency Information can not be
Seen at the Same Time

= Time-frequency Representation of the Signal is
Needed

—

Most of Transportation Signals are Non-stationary.

(We need to know whether and also when an incident was happened.)
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SFORT TIME FOURIER
‘L TRANSFORM (STFT)

= Dennis Gabor (1946) Used STFT

= To analyze only a small section of the signal at a time
-- a technique called Windowing the Signal.

= The Segment of Signal is Assumed Stationary
= A 3D transform

window

Amplitude
Frequency

A function of time
and frequency

Ul Time



DRAWBACKS OF STFT

= Unchanged Window

= Dilemma of Resolution
= Narrow window -> poor frequency resolution
= Wide window -> poor time resolution

= Heisenberg Uncertainty Principle
= Cannot know what frequency exists at what time intervals

Via Narrow Window Via Wide Window




Example of spectral analysis

» Spectrum of a bird chirping
— Interesting,.... but...
— Does not tell the whole story

. — No temporal information!
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Time Dependent Fourier Transform

» To get temporal information, use part of
the signal around every time point

Xn,w) = Z r[n + mwm]e 7¢™

nm——0o

v

* Mapping from 1D = 2D, n discrete, w

cont.
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‘Time Dependent Fourier Transform

» To get temporal information, use part of
the signal around every time point

a
3O

Xn,w) = Z r[n + mwm]e 7¢™

*Also called Short-time Fourier Transform (STFT)
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‘Spectrogram
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Discrete Time Dependent FT

L—1
X, k| = Z z[rR + m]w[m]e 2 Fm/N
m=0

* L - Window length
* R - Jump of samples
* N - DFT length
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claesson.con

Heisenberg Boxes
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DFT

N—1
X[k] __ Z x[n]e—QQWkn/N
2 n—=0
Aw = Nﬂ .
At =N W
Aw - At = 27

A S

1—\—%

one DFT coefficient
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DFT

X k| = z_: x[n]e_jzﬂk”/N

n=0

2T
Aw = —
TN
At =N
Aw - At =27

Question: What is the effect of zero-padding?
Answer: Overlapped Tiling!
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Discrete STFT

I optilonal
X|r k| = Z r[r R + m|w[m]e=72mkm/N
m=0
27T A
AUJ — f N
At =L

Y

one STFT coefficient
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Discrete STFT

S .
X|r k| = Z r[r R + m|w[m]e=72mkm/N

2T A
Aw:f N
At = L

1

M. Lustig, EECS UC Berkeley



Discrete STFT

I optilonal
X|r k| = Z r[r R + m|w[m]e=72mkm/N

m=0

",
2T
Aw=2"
YT
At = L

t

Question: What is the effect of R on tiling? what effect of N?
Answer: Overlapping in time or frequency or both!
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Applications

* Time Frequency Analysis
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Spectrogram
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» What is the difference between the
a) Window size B<A c) Window type is different

b) Window size B>A d) (A) uses overlapping window
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DTFT of Rectangular Window

DTFT of Hamming Window




Spectrogram
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» What is the difference between the
a) Window size B<A c) Window type is different

b) Window size B>A d) (A) uses overlapping window
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‘Spectrogram

Hamming Window, L = 32

Hamming Window, L = 32

DTFT of Hamming Window
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Spectrogram of FM

yo(t) = Acos (27T fi+orAS /O t az(T)dT)

nl’
yln| =y(nT) = Aexp <j27TAf/O :E(T)dT)
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Spectrogram of FM radio Baseband
nT’
yln| =y(nT) = Aexp (jZWAf/O x(7)d7>

x(t) = EL + R)J""P'l - cos(2m fpt) + (L — R) COS(Z?T(QfP)t)J+9.O5 - RBDS(t) COS(QT(‘(Sfp)t)/.
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Subcarrier FM radio (Hidden Radio Stations

92KHz

67KHz
57KHz

38KHz =

19KHz

subcarier +92Khz Punjabi radio spelled wrong!

Scharier *67Kh2 Ffﬁﬂ(h Hatjan Spe”ed Wrong!
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Applications

* Time Frequency Analysis
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https://gm7something.wordpress.com/2012/12/09/nov-radio-days/

Signal Wiki:
http://www.s1gidwiki.com/wiki/Category:Active
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STFT Reconstruction

N-1
1 .
zrlrR 4+ mlwr|m| = ~ E X [n, k]e/2mkm/N
k=0

» For non-overlapping windows, R=L:

rin —rlL]
wr|n —rL)

rn| =

rL<n<(r+1)R-1

» What is the problem?
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STFT Reconstruction

N-1
1 .
xlrR + mlwp|m| = ~ E X [n, k]e/2mkm/N
k=0

» For non-overlapping windows, R=L:

rin —rlL]
wr|n — rL

rn| =

rL<n<(r+1)R-1

» For stable reconstruction must overlap
window 50% (at least)
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STFT Reconstruction

» For stable reconstruction must overlap
window 50% (at least)

* For Hann, Bartlett reconstruct with
overlap and add. No division!
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‘Applications

* Noise removal
A

» Recall bird chirp

“ (I

Spectrum of a bird chirp
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Application

» Denoising of Sparse spectrograms
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» Spectrum is sparse! can implement
adaptive filter, or just threshold!
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‘Denoising

Chirp with Gaussian Noise
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Limitations of Discrete STFT

» Need overlapping = Not orthogonal

» Computationally intensive O(MN log N)

« Same size Heisenberg boxes
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From STFT to Wavelets

» Basic ldea:

—low-freq changes slowly - fast tracking
unimportant

—Fast tracking of high-freq is important in many
apps.
—Must adapt Heisenberg box to frequency

« Back to continuous time for a bit.....
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From STFT to Wavelets

« Continuous time
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