

Digital Signal Processing

Lecture 5B Time-Frequency Tiling

FREQUENCY ANALYSIS

- Frequency Spectrum
 - Be basically the frequency components (spectral components) of that signal
 - Show what frequencies exists in the signal
- Fourier Transform (FT)
 - One way to find the frequency content
 - Tells how much of each frequency exists in a signal

$$X(k+1) = \sum_{n=0}^{N-1} x(n+1) \cdot W_N^{kn}$$
$$x(n+1) = \frac{1}{N} \sum_{k=0}^{N-1} X(k+1) \cdot W_N^{-kn}$$
$$w_N = e^{-j\left(\frac{2\pi}{N}\right)}$$

$$X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-2j\pi ft} dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{2j\pi ft} df$$

STATIONARITY OF SIGNAL

- Stationary Signal
 - Signals with frequency content unchanged in time
 - All frequency components exist at all times
- Non-stationary Signal
 - Frequency changes in time
 - One example: the "Chirp Signal"

STATIONARITY OF SIGNAL

Same in Frequency Domain

At what time the frequency components occur? FT can not tell!

NOTHING MORE, NOTHING LESS

- FT Only Gives what Frequency Components Exist in the Signal
- The Time and Frequency Information can not be Seen at the Same Time
- Time-frequency Representation of the Signal is Needed

Most of Transportation Signals are Non-stationary.

(We need to know whether and also When an incident was happened.)

ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT)

SFORT TIME FOURIER TRANSFORM (STFT)

- Dennis Gabor (1946) Used STFT
 - To analyze only a small section of the signal at a time
 -- a technique called *Windowing the Signal*.
- The Segment of Signal is Assumed Stationary
- A 3D transform

STFT_X^(ω) $(t', f) = \int [x(t) \bullet \omega^*(t - t')] \bullet e^{-j2\pi ft} dt$ $\omega(t)$: the window function

> A function of time and frequency

DRAWBACKS OF STFT

- Unchanged Window
- Dilemma of Resolution
 - Narrow window -> poor frequency resolution
 - Wide window -> poor time resolution
- Heisenberg Uncertainty Principle
 - Cannot know what frequency exists at what time intervals

Via Narrow Window

Example of spectral analysis

- Spectrum of a bird chirping
 - Interesting,.... but...
 - Does not tell the whole story
 - No temporal information!

x[n]

Time Dependent Fourier Transform

 To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$

*Also called Short-time Fourier Transform (STFT)

• Mapping from 1D \Rightarrow 2D, n discrete, w cont.

Time Dependent Fourier Transform

 To get temporal information, use part of the signal around every time point

$$X[n,\omega) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\omega m}$$
*Also called Short-time Fourier Transform (STFT)

Spectrogram

Discrete Time Dependent FT

$$X_r[k] = \sum_{m=0}^{L-1} x[rR+m]w[m]e^{-j2\pi km/N}$$

- L Window length
- R Jump of samples
- N DFT length

Tradeoff between time and frequency resolution

Time-Frequency uncertainty principle

DFT

DFT

Question: What is the effect of zero-padding? Answer: Overlapped Tiling!

Applications

Time Frequency Analysis

Spectrogram of Orca whale

Spectrogram

What is the difference between the
a) Window size B<A
b) Window size B>A
c) Window type is different
d) (A) uses overlapping window

Sidelobes of Hann vs rectangular window

What is the difference between the
a) Window size B<A
b) Window size B>A
c) Window type is different
d) (A) uses overlapping window

Spectrogram

Spectrogram of FM

$$y_c(t) = A \cos\left(2\pi f_c t + 2\pi\Delta f \int_0^t x(\tau) d\tau\right)$$

$$y[n] = y(nT) = A \exp\left(j2\pi\Delta f \int_0^{nT} x(\tau)d\tau\right)$$

Spectrogram of FM radio

Spectrogram of FM radio Baseband

$$y[n] = y(nT) = A \exp\left(j2\pi\Delta f \int_0^{nT} x(\tau)d\tau\right)$$

Subcarrier FM radio (Hidden Radio Stations)

Applications

Time Frequency Analysis

Spectrogram of digital communications -Frequency Shift Keying JT65

https://gm7something.wordpress.com/2012/12/09/nov-radio-days/

Signal Wiki: http://www.sigidwiki.com/wiki/Category:Active

STFT Reconstruction

$$x[rR+m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n,k] e^{j2\pi km/N}$$

• For non-overlapping windows, R=L :

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$
$$rL \le n \le (r+1)R - 1$$

• What is the problem?

STFT Reconstruction

$$x[rR+m]w_L[m] = \frac{1}{N} \sum_{k=0}^{N-1} X[n,k] e^{j2\pi km/N}$$

• For non-overlapping windows, R=L :

$$x[n] = \frac{x[n - rL]}{w_L[n - rL]}$$
$$rL \le n \le (r+1)R - 1$$

 For stable reconstruction must overlap window 50% (at least)

STFT Reconstruction

 For stable reconstruction must overlap window 50% (at least)

 For Hann, Bartlett reconstruct with overlap and add. No division!

- Noise removal
- Recall bird chirp

Application

Denoising of Sparse spectrograms

 Spectrum is sparse! can implement adaptive filter, or just threshold!

Denoising

Thresholded Spectrogram

Limitations of Discrete STFT

• Need overlapping \Rightarrow Not orthogonal

Computationally intensive O(MN log N)

Same size Heisenberg boxes

- Basic Idea:
 - –low-freq changes slowly fast tracking unimportant
 - -Fast tracking of high-freq is important in many apps.
 - -Must adapt Heisenberg box to frequency

Back to continuous time for a bit.....

From STFT to Wavelets

Continuous time

