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Abstract

The problem of signal reconstruction from the magnitude of its Fourier
transform arises in many applications where the wave phase is apparently
lost or impractical to measure. One example of such an application that
has attracted a substantial number of researchers in recent years is Coherent
Diffraction Imaging (CDI). CDI is a “lens-less” technique for 2D and 3D
nano-objects reconstruction with unprecedented resolution making possible
visualization at the atomic level. Currently, the prevailing method of phase
recovery is the Hybrid Input-Output (HIO) method, that was developed by
Fienup in nineteen-seventies as a modification of the even older Gerchberg-
Saxton method. In this work we analyze the problem of the phase retrieval
from a non-convex optimization’s standpoint. To our knowledge, we are the
first to provide analysis of the second order derivatives (the Hessian) of the
commonly used error measure. This analysis reveals some important details of
already existing algorithms, and leads us to the development of a significantly
faster reconstruction method.



Chapter 1

Introduction

1.1 Motivation

Rapid development of nano-technology has resulted in great interest in imaging
techniques capable of providing satisfactory images of nano-structures. One of
the most promising techniques for such a high resolution imaging is Coherent
Diffraction Imaging (CDI). CDI has been successfully applied to visualizing
a variety of nano-structures, such as nano-tubes [24|, nano-crystals [22],
defects inside nano-crystals [17], proteins and more [?]. In CDI, a highly
coherent beam of X-Rays or electrons is incident on a specimen, generating
a diffraction pattern. Under certain conditions the diffracted wavefront is
approximately equal (within a scale factor) to the Fourier transform of the
specimen. After being recorded by a CCD sensor, the diffraction pattern
is used to reconstruct the specimen. However, due to the physical nature
of the sensor, the phase of the diffracted wave is completely lost. Hence,
we are limited to recording only the intensity (squared amplitude) of the
diffracted wave. Effectively, this is equivalent to recording the magnitude of
the specimen’s Fourier transform. Due to the lack of phase information we
face the problem of a signal reconstruction from partial information about its
Fourier transform. More specifically, we are to reconstruct a signal from the
magnitude of its Fourier transform. Reconstruction based on this incomplete
data in the Fourier space, is performed by a software algorithm, that, in effect,
replaces the objective lens of a typical microscope. The advantage in using
no lenses is that the final image is aberration-free and so resolution is only
diffraction and dose limited, i.e., dependent on the wavelength, aperture size
and exposure time. However, the reconstruction algorithm is not trivial, and
particularly computationally expensive, since the number of unknowns can
easily surpass 10° for a three-dimensional signal.



1.2 Data Acquisition model

Of course, in the real world, the object x(t) as well as its Fourier transform
(denoted by Z(w)) are both continuous functions of ¢ and w respectively,
where ¢ and w are multidimensional coordinate vectors. However, data
acquisition and further processing are done on digital computers, hence, a
complete analysis of the problem has to address issues associated with the
data sampling and quantization. Note that we record the diffraction pattern
intensity, not the object itself. Hence, our sampling happens in the Fourier
domain and not in the object domain. Given that the object x(t) has a
limited spatial extent, say x(t) = 0 for ¢t & [0, 27|, the sampling in the Fourier
domain must be done at the rate of 1/27. to prevent aliasing in the object
domain. However, a more thorough examination of the problem yields an even
higher sampling rate requirements. Recall that we record only the intensity
of the diffraction pattern. The intensity can be represented as follows

I(w) = [#(w)]* = &(w)2(w), (1.1)
where the overbar (+) operator denotes complex conjugate. Hence, the inverse
Fourier transform of the measured intensity I(w) provides the auto-correlation
function of the object

FHI(W)] = o(—t) * 2(t). (1.2)

Since the intensity represents the Fourier transform of the auto-correlation,
and the auto-correlation is twice as large as the object, the diffraction pattern
intensity should be sampled at least twice as finely as the object to capture
all possible information about the object. Therefore, as long as we deal
with a discrete representation of both the object and the Fourier transform
magnitude, related to each other through the Discrete Fourier Transform
(DFT), we must double the size of the signal by padding it with zeros in order
to satisfy the above sampling rate requirement. In what follows we will refer
to a zero-padded signal as described above as a sufficiently padded signal.

Hereinafter in this paper we consider the phase retrieval problem for dis-
crete signals only and the DFT transform is assumed to be unitary. Problems
of the quantization process are beyond the scope of this work.

1.3 Reconstruction from incomplete Fourier data

Before we approach our main problem, let us consider various scenarios of
incomplete Fourier data. Recall that the Fourier transform of a real signal x,



is, in general, complex. There are two common representations of a complex
number z: one as a sum of its real and imaginary parts

z =R, +iS,,

and another one as a product of z’s magnitude with the complex exponent of
its argument
z = r,e?:,

where r, = |z|.

Let us consider first a situation when only the real part of a Fourier
transform is known. As we show below, a perfect reconstruction of x is
possible provided that the signal x was sufficiently padded with zeros, i.e.,
the padding size is equal to that of the original signal in every dimension.
Recall that for any real signal = there exists a unique representation as a sum
of two signals

T =T+ Ty,

such that z. is even and z, is odd. It can be shown that z.(t) = 5 (2(t)+z(—t))
1

and z, = 5(x(t) — 2(—t)). Recall also that the Fourier transform of an even
signal is real and that of an odd function is purely imaginary. Hence, we
conclude that the real part of Z is nothing but the Fourier transform of z., and
the imaginary part is that of z,. Hence, we are able to get the even part z.
by the inverse Fourier transform of the real part of . Reconstructing = from
x is trivial, we should take the right part of . multiplied by 2 everywhere
except at origin. Similarly, almost perfect reconstruction is possible from
the imaginary part of the Fourier transform. In the latter case x can be
reconstructed everywhere besides the origin. The idea is illustrated in Figure
1.1 on page 5.

Let us now consider the second representation, where a complex number
is represented by its modulus and phase. We start with signal reconstruction
from its Fourier representation phase. Several authors (see e.g. [6, 5, 13, 14, 16])
have shown that under certain conditions reconstruction is possible within
a scale factor. Following is a theorem providing sufficient conditions for

reconstruction (from [6])

Theorem 1. Let x[n] be a sequence which is zero outside the interval 0 < n <
N — 1 with x[0] # 0 and which has a z-transform with no zeros in reciprocal
pairs or on the unit circle. Let y[n] be any sequence which is zero outside the
interval 0 < n < N — 1. If ¢,(w) = ¢,(w) at (N — 1) distinct frequencies
within the interval 0 < w < 7, then y[n] = Bx[n] for some positive constant
B. If tan(¢y(w)) = tan(¢,(w)) at (N — 1) distinct frequencies in the interval
0 < w <, then y[n] = Bz[n| for some real constant [3.

4
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Figure 1.1: Even and Odd parts of a signal.
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(a) a dog image

(¢) dog’s magnitude (d) cat’s magnitude
with cat’s phase with dog’s phase

Figure 1.2: Importance of phase

Whence, it follows that a reconstruction from the phase alone is possible
(up to a scale factor) provided that the signal was padded with a sufficient
number of zeros, similarly to reconstruction from the real or imaginary part
of the Fourier transform.

In general, the phase of a signal’s Fourier representation tends to preserve
more features of the original signal. As we will see later reconstruction from
the Fourier magnitude is not always possible. In addition, as an informal
confirmation of the phase importance see Figure 1.2.

Finally we consider the case of known magnitude of the Fourier transform,
which is the main subject of this paper. It turns out that reconstruction
from the Fourier transform magnitude is significantly more difficult than
reconstruction from other cases of incomplete Fourier data. Uniqueness of the
reconstruction depends on reducibility of the z-transform of the sought signal.
It has been shown (see e.g. [5]) that, if the z-transform of a signal x[n| has
at most one irreducible non-symmetric factor, then, the Fourier transform
magnitude of the sufficiently zero-padded signal defines x[n] uniquely up to
trivial transformation. Trivial transformations, here, include a linear shift,
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Figure 1.3: Several solutions in one dimension

coordinate-reversal, or a change in the sign of the signal, i.e.,
y[n| ~ x[n] if y[n] = xz[k £ n (1.3)

for some integer k. And the z-transform X (z) of a signal z[n] is said to be
symmetric if, for some vector d of positive integers

X(2) = £279X (z_l) ,

where 2¢ is defined for two vectors z = [21, 2o, ..., 2m|T and d = [dy, do, . . . d)
as follows

d di

_ da d
24 =202y pim

om

It should be pointed out that verification of reducibility of a z-transform
is not practical. However, for a multidimensional signal it has been shown
[7] that within the set of all polynomials in m > 1 variables, the subset of
reducible polynomials is a set of measure zero as is the set of symmetric
polynomials. Hence, it is very unlikely to have a non-unique (in the sense of
the trivial transformations similarity as defined by Equation (1.3)) solution
to the reconstruction problem in case of a multidimensional signal. Moreover
irreducibility can be enforced by adding a certain reference signal [2]. In one-
dimensional problems, the uniqueness is, in contrast, uncommon. Figure 1.3
illustrates three signals having the same Fourier magnitude, that are not
related to each other via a trivial transformation.

The rest of the paper is organized as follows. In Chapter 2 we describe
formally the problem in terms of constraints imposed in the Fourier and object



domains. Chapter 3 provides a review of modern reconstruction methods.
Mathematical tools and subsequent analysis of the problem are done in
Chapter 4. In Chapter 5 we present our results along with comparison with
existing methods. Then we discuss directions of future research in Chapter 6.
A short summary concluding the work appears in Chapter 7.

Please note that in order to simplify the typography and to improve
readability we often depart from a strict mathematical notation, however, all
cases of such an informal notation are explained and clarified when necessary.



Chapter 2

General Problem Description

2.1 Problem Definition

First, we start with a formal description of the reconstruction problem. Let
us denote by x an unknown m-dimensional signal that we seek to reconstruct
from the magnitude of its Fourier transform. For obvious reasons, knowing
the magnitude of the Fourier transform is not sufficient for unique recon-
struction of the signal.!Hence, one has to provide additional information
to either guarantee unique reconstruction or to speed up the process. This
additional information is usually given in the object domain. Thus, in a
typical reconstruction problem one has two types of constraints: one in the
Fourier space and another one in the object space. Among the Fourier space
constraints may be the magnitude of the Fourier transform, phases known at
some frequencies, and probably others. In the object space the constraints
may include support information, bounds on x values, e.g., non-negativity,
etc.

2.1.1 Fourier space constraints

In this paper we adopt the following notation for the Fourier transform. Two
signals x and 2 will denote a Fourier transform pair, namely, their relationship
with each other is given by

i 2 Fla),
v 2 F

'Note that even sufficiently oversampled Fourier transform, as required by Theorem 1,
does not guarantee uniqueness.



where F|-| represents the Unitary (Discrete) m-dimensional Fourier transform.
In this notation, our Fourier domain constraint is given by

|$| =T,

where r is the known (measured) magnitude of the Fourier transform of the
sought signal x. Virtually all authors have adopted the following functional
as a data discrepancy measure in the Fourier space

E = |||z] - [, (2.1)

where || - || denotes the standard Lo vector norm. This approach is not optimal
for several reasons. First, the data measured by the sensor is proportional
to the scattered wave intensity which is proportional to 72 and not to r.
Consequently, a better choice would be to force |2]? to be equal to r? by
minimizing an appropriate norm. Second, by using a least squares formulation
one implicitly assumes a normal noise distribution in the measurements.
However, in our case, the physical process of data acquisition corresponds to
counting the number of photons or electrons hitting the sensor. Measurements
in such a process are known to have Poisson distribution of noise. Moreover,
using |z|? instead of |z| is more computationally efficient as we will show
later. Impact of different choices of the error functional E is demonstrated in
Section 5.2.2.

2.1.2 Object space constraints

The very basic information about the object is probably information about
its space extent, which is called support. Additional constraints may impose
bounds on values that x may receive. E.g. in the CDI z must be real and
non-negative. In electron microscopy, on the other hand, z is a complex signal
whose magnitude is known. The latter case is known as signal reconstruction
from two intensity measurements. Historically, this was the problem that
led to now classical Gerchberg-Saxton algorithm [4] which is, in fact, the
progenitor of the currently most popular algorithms.

10



Chapter 3

Previous Work

3.1 Gerchberg-Saxton (Error Reduction) Algo-
rithm

We start with the Gerchberg-Saxton algorithm that was the first particularly
successful algorithm for the phase retrieval problem from two intensity mea-
surements. Even more important, this algorithm serves as a basis for the
later algorithms. The algorithm consists of the following four simple steps.

1. Fourier transform the current estimate of the signal.

2. Replace the magnitude of the resulting computed Fourier transform
with the measured Fourier magnitude to form an estimate of the Fourier
transform.

3. Inverse Fourier transform the estimate of the Fourier transform.

4. Replace the magnitude of the resulting computed signal with the mea-
sured signal modulus to form a new estimate of the signal.

As depicted in Figure 3.1. The Gerchberg-Saxton algorithm is easily gen-
eralized to a large class of problems. The generalized Gerchberg-Saxton
algorithm can be used for any problem in which partial constraints (in the
form of measured data or information known apriori) are known in each of
the two domains, the object (or signal) domain and the Fourier domain. One
simply transforms back and forth between the two domains, satisfying the
constraints in one before returning to the other. This generalization of the
Gerchberg-Saxton algorithm is known as the Error Reduction algorithm. It
can be shown that the error decreases at each iteration of the Error Reduction
algorithm, however, its convergence rate may be painfully slow. Moreover,
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Figure 3.1: Block diagram of the generalized Gerchberg-Saxton algorithm.

convergence to a true solution is guaranteed only if the constraints are of a
convex type [23].

3.2 Fienup Algorithms

Fienup in [3] suggested a family of iterative algorithms that are based on a
different interpretation of the Error Reduction algorithm. These algorithms
differ from the Error Reduction algorithm only in the object domain operations.

The first three operations — Fourier transforming xy Sk T, satisfying the
Fourier domain constraints  — 2}, and inverse Fourier transforming the
result &) — ) are the same for both algorithms. However, the further
treatment is different. Fienup’s insight was to group together these three
steps into a non-linear system having an input z and an output 2’ as depicted
in Figure 3.2 on page 13. The useful property of this system is that the output
2’ is always a signal having a Fourier transform that satisfies the Fourier
domain constraints. Therefore, if the output also satisfies the object domain
constraints, it is a solution of the problem.

Unlike the Error Reduction algorithm the input z must no longer be
thought of as the current best estimate of the signal; instead, it can be
thought of as a driving function for the next output, 2’. The input z does
not necessarily satisfy the object domain constraints.

Based on this novel interpretation Fienup suggested three algorithms for
the phase retrieval problem from a single intensity and apriori knowledge of
the signal  being non-negative everywhere.

input-output This algorithm is based on a claim that a small change of the
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Figure 3.2: Block diagram for system for the input-output concept.

input results in a change of the output that is a constant o times the
change in the input. Hence, if a change Az is desired in the output, a
logical choice of the change of the input to achieve that change in the
output would be 3Az, where 3 is a constant, ideally equal to a~*. For
the problem of phase retrieval from a single intensity measurement the
desired change of the output is

A(t) = {0, te v,

—x(t), tew,

where v is the set of points at which 2/(t) violates the object domain
constraints. That is, where the constraints are satisfied, one does not
require a change of the output. On the other hand; where the constraints
are violated, the desired change of the output, in order to satisfy the
non-negativity constraint is one that drives it towards a value of zero,
and therefore, the desired change is the negated output at those points.
Hence, the logical choice for the next input is

_ xk(t), t ¢ v,
- {xk(t) — B (t), tew. (3.1)

output-output This algorithm is based on the following observation of the
non-linear system depicted in Figure 3.2. If the output 2’ is used as
an input, the resulting output will be 2’ itself, since it already satisfies
the Fourier domain constraints. Therefore, irrespective of what input

13



actually resulted in the output z’, the output ' can be considered to
have resulted from itself as an input. From this point of view another
logical choice for the next input is

Tr41 (t) = 2y (t) + BAzi(t)
_ {x%(t), t v, (3.2)

xy(t) — i (t), tew.

Note that if § = 1 the output-output algorithm becomes the Error
Reduction algorithm. And since best results are usually obtained with
0§ # 1 the Error Reduction algorithm can be viewed as a sub-optimal
version of the input-output algorithm.

hybrid-input-output Finally we consider the third algorithm suggested by
Fienup. This time the next input is formed by a combination of the
upper line of Equation (3.2) with the lower line of Equation (3.1):

Ter1(t) = 4 (t) + Ak ()

I EAGE tgv,
B {xk(t) — Ba/(t), tew. (3:3)

The last algorithm known as the Hybrid Input Output (HIO) algorithm is
currently the most widely used algorithm in the industry due to its simplic-
ity and usually best convergence rate amongst the above three algorithms.
However, mixing algorithms often yields results better than any standalone
algorithm. Below we demonstrate the convergence of these algorithms on
three test signals shown in Figure 3.3 on page 15 These three signals, one
being a typical image in the X-Ray crystallography (Flake), another, being
a typical “natural” image (Lena), and another one representing an image
typical to computerized tomography (Phantom), will be used throughout this
paper for algorithm performance evaluation and comparison. Figure 3.4 on
page 16 demonstrates convergence rates of Fienup’s Output-Output (OO)
and Hybrid Input-Output (HIO) algorithms. The Input-Output algorithms
failed to converge.

Since the HIO algorithm is consistently better than the others we shall
compare our results with it.

14



(a) Typical X-Ray Crystallography (b) Typical natural image.
image.

(¢) Typical tomography image.

Figure 3.3: Signal examples.
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Chapter 4

Optimization Framework

4.1 Mathematical Formulation

In this work our main approach is based on unconstrained optimization
techniques. Hence, we shall start with a proper objective function definition.
Let us consider first the most frequently used objective function in the Fourier
domain,

E = la] -l (4.1)

where  denotes the Fourier transform of a signal x, » denotes the measured
magnitude of the Fourier transform, and || - || denotes the standard Ly vector
norm. Note, that  and r are not necessarily one-dimensional vectors, hence,
strictly speaking, the Ls is not properly defined in all cases. A proper notation
would be

E = | vec(jz| —r)|I%,

where the operator vec(-) is a simple re-arrangement of a multidimensional
signal x into a column vector in some predefined order. For example, let x be
a two-dimensional m x n signal (matrix) and x; its i-th column; then vec(x)
is an mn x 1 vector

sl

T
vec(z) = ’

Tn

Thus, in our convention the vec operator transforms a matrix into a column
vector by stacking the matrix columns one beneath the other. Of course,
the vec operator is defined for signals of arbitrary (finite) dimensionality.
For the sake of brevity, hereinafter in this paper we shall use z and vec(z)
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interchangeably and an appropriate form should be clear from the context.
Let us now review the objective function defined by Equation (4.1)

E = ||z - r|*
= ||| Ffa]| - r[l”
= |l|Fa| —r|”. (4.2)

Here, F[z| denotes the Discrete Fourier Transform (DFT) operator and F is
the corresponding matrix in the sense that

vec(Flx]) = F vec(z).

We introduce the DFT matrix F just for convenience, however, practical
implementation shall not use F explicitly. Note also that Fx means, actually,
Fvec(z), however, the shorter form is used, as mentioned earlier. Consider
now the final form of the objective function we obtained in Equation (4.2)

2
E = ||Fa| —r|?,
which can be viewed as a non-linear real function of a complex argument
E = ¢(Fz), (4.3)

so that ¢ : CV — R, where N is the number of elements in z. For large N,
storing the Hessian matrix of ¢ (or an approximation of it) is not feasible
due to its size of N x N elements. Therefore, Newton type optimization
methods are not applicable in most realistic cases. In this work we use
the SESOP method [15] that was specifically developed for cases where the
linear operator F' is computationally expensive. Moreover, it was reported to
provide better results than Conjugate Gradients methods. Details of efficient
implementation will be discussed in Section 4.3, meanwhile we shall develop
the necessary mathematical basis. For an optimization method to be efficient
one must provide information about the objective function gradient and the
Hessian. One option is to consider E as a real function of a real argument
x and to perform all required computations. However, this approach is less
suitable for an efficient implementation using the SESOP algorithm and, more
importantly, this approach is less extensible. That is changing, the functional
will require the whole computation to be done again from scratch. Therefore,
we use another approach which, is more elegant and easily extensible. The
method is developed in the following subsections.
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4.1.1 Gradient and Hessian Definition via Differentials

Following the approach of [11] let f be a differentiable scalar function of an
n X 1 vector of real variables x. Consider now the first differential of f.

df = VTda,

where V f denotes the gradient of f. Alternatively, the above formula can be
re-written as follows

df = (V/f,dx), (4.4)
where (-, ) denotes the standard inner product over R". Equation (4.4) leads

to a new definition of the gradient. Namely, the gradient V f of function f is
defined as to satisfy df = (V f,dz). Similarly, we define the Hessian V2 f

AV f = (V?f,dz). (4.5)
Note that, unlike in Equation (4.4), this time the inner product is between a

matrix and a vector, in this case (H,g) = Hg.
Now, let us denote Fz = z, hence Equation (4.3) becomes

In order to find the gradient and the Hessian of £ we use the method of
differentials. Let us consider the first differential of £

Hence, using our definition we obtain
VE = F*Vop, (4.6)
where F* denotes the Hermitian (conjugate) transpose of F. In a similar
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manner we can find the Hessian of F

dVE = d(F*Vy)
= F*dVyp
=F <V2<p, dz>
= <F*V290, dz>
= (F*V?¢p,d(Fx))
= (F*V?p, Fdz)
= (F*V?pF,dx).

Hence, according to the definition of the Hessian
V2E = F*V?pF. (4.7)

The only problem now is that the gradient V¢ and the Hessian V2¢ are not
formally defined, since, in our case, ¢ is a real scalar function of a complex
vector. Therefore we shall develop a suitable formulation for such a gradient
and Hessian in the next sections.

4.1.2 Complex gradient

Let us consider now the case of a real scalar function ¢(z) of a complex vector
argument z = [21, 2o, ..., 2,]7. One would like to use the standard definition
for the gradient of ¢

d
Vo= |77
9
Ozn
However, this approach is not feasible in general case, since the derivative
Op

5¢ is not defined, because ¢ is not a holomorphic function as we show in the

next Lemma.

Lemma 2. Let f be a real function of a complex argument z, then f cannot
be holomorphic unless it is constant.

Proof. Let us denote the complex argument z = = + iy and f(z) = u(z) +
iv(z) = u(z,y)+iv(z,y). Let us assume now that f is holomorphic. Therefore,
it must satisfy the Cauchy-Riemann equations

ou _ v
ox ~ Oy’
ou _ ow
oy ~ Oz
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However, f is real, hence v(z,y) = 0, which, in turn means that % = g—z =0.
That is, u(z,y) must is a constant and so is f. O

Since constant functions are not particularly interesting we must develop
a new complex gradient operator for real functions of complex argument.
Brandwood in [1] suggested to treat ¢(z) as a function of two independent
variables z and z, where z denotes the complex conjugate of z. Using our
gradient definition via differentials we can write

Dy Oy . _
gdz + £dz

_ I

dp =

where, R(z) represents the real part of a complex number z. According to
our previous definition of the gradient we establish that

d¢
Vip(z) =2—. 4.8
olz) =25 (48)
Before we apply this result to our objective function let us show that the
above definition provides desired qualities of a gradient. It was shown in [1]
that the above definition of the complex gradient is consistent with two major
qualities of the usual gradient. These theorems are provided below.

Theorem 3. Let f: C+— R be a real valued function of a complex variable
z. Let f(z) = g(2,2), where g : C x C — R is a function of two complex
variables, such that g(z,a) and g(b, z) are each analytic functions of z. Then
a necessary and sufficient condition for f to have a stationary point is that
0f/0z = 0, where the partial derivative with respect to z treats zZ as a constant
in g. Similarly, 0f/0z = 0 is also a necessary and sufficient condition.

Theorem 4. Let f and g be two functions as defined in Theorem 3, the
gradient V f = 2% defines the direction of the maximum rate of change of f
with z.
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Proof. Consider Equation (4.8)

df—?)?<2ﬁ dz>.

0z’
of

of
—_ <
§R<282’dz>‘

However, according to the Cauchy-Schwarz inequality

9, 0
‘<28—‘Z,dz>‘ < HQa—‘zH -ldz|| . (4.10)

It is easy to verify that the equality in Equations (4.9) and (4.10) only holds
when 0f/0z = adz for some real positive scalar a. O

Obviously
|df| =

Note that Brandwood’s definition of the complex gradient was 9//sz. He
argued that for f(z) = z the gradient should be 1 not 2. Although both
choices provide the same direction, the rate of change is not correct for the
Brandwood’s definition.

Now, with a complete theory in hand, we can return to our problem and
to derive the gradient of our objective function. Using Equation (4.6) we
obtain

VE = F*Vp

Oy

= F"2—.

0z

Now, recalling that ¢(z) = |||z| — r||* we obtain

Iy
Vp=2—
7Tz

=4l =) (2]

=4(]z - 1) % (22)"

—2 (z—ré'). (4.11)



To obtain the gradient VE we must, by Equation (4.6), (left) multiply the
above result by F™*
VEzZW(%—q%). (4.12)
z
Note that Equation (4.12) gives us the gradient VE as a function of z. To
obtain an equivalent expression as a function of x we substitute z = Fzx to
obtain

VE =2F* (z—ri)

||
Fx
—oF* Pz —r
( ' ’“;m)
F
:2<x—FWM§D. (4.13)

A few words about notation are in order. Note that quantities like r, z, x,
Fz all represent vectors, thus the product rz or division z/|z| are not defined.
What we mean is element-wise product or division of corresponding vectors,
hence, the result is also a vector of the same size.

Note that the expression F' *r‘?—i has a clear physical meaning: start with
a signal x, Fourier transform it into £ = Fx, then replace the modulus of &
with 7 and inverse Fourier transform the result. This is exactly 2’ we have
already seen in Section 3.2. Later, in 4.2we will see additional properties of

.

4.1.3 Complex Hessian

Our interest in the Hessian is twofold. First, there is no algorithm at the
moment that uses the information available from the second order derivatives.
All current algorithms are gradient based. Second, an analysis of the Hessian
matrix should be useful in understanding the problem behaviour. Therefore,
we would like to have an elegant and easy to compute method for the Hessian
matrix calculations. The method, of course, should be suitable for a real-
valued function of a complex argument. There were several attempts to
define the Hessian in an appropriate form, first by Van den Bos in [21],
later by Hjorgunes and Gesbert [8, 9, 10], however, none of these attempts
has succeeded in producing results similar to that of the complex gradient.
Nevertheless, for our purposes we can expand the idea of treating z and
Z as independent variables to find an elegant formula for Hessian-vector
multiplication, since this is what is actually required in our algorithm.
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Let us consider the first differential of the gradient as we obtained in 4.11

_ 0Vp oV
=2, dz + 5 dz
0 (22 — 21”21/22_1/2) 0 (22 _ 2rzl/25—1/2) )

= ER dz + PR dz

2
— (2 - i) dz + = dz.
E 2]

d(Ve)

Hence, multiplication of the Hessian V2¢ by a vector v reads
9 r rz?
Vipr =12 — — | v+ —=0. (4.14)

Although we do not have the Hessian V2 in an explicit form we do have the
Hessian of E which will be analyzed in Section 4.2.

4.2 Mathematical analysis

In order to analyze the spectral properties of the Hessian matrix V2E we
shall start with the Fourier transform matrix F', which plays a vital role in

the Hessian decomposition, as follows from Equation (4.15). Recall that we
defined [ as follows

Fvec(z) = vec(F|z]).

Consider a one-dimensional signal z = [z1, 2o, ..., 2,]T. Obviously, z can be
represented as a weighted sum of the standard basis vectors

n
r = E i€,
=1
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where e; is the vector with a 1 in the i-th coordinate and zeros everywhere.
Thus, we have

— (Fled],|Fleal, ... Flea] |2
= F,zx.

Hence, for a one-dimensional signal of size n we define the matrix F = F,
such that its i-th column is given by F[e;]. Obviously, F'x = F[z]. The
matrix F;, exhibits several characteristics:

1. F,, is unitary due to our choice of unitary DFT.
2. F, is symmetric, i.e., FT = F,.
3. F;t=Fr

4. F? is a permutation matrix that reflects a signal around the origin, i.e.,

T T
) S
F2 €3 . Ln—1
- =
Tn-1 T3
- xn - L x2 -

5. F* = I,, where I, is the identity matrix of size n x n.

6. As follows from property 5, the eigenvalues A of F;, satisfy a characteristic
equation A* = 1. Therefore, the eigenvalues of F,, are the fourth roots
of unity: A is +1, —1, 44, or —i. Since there are only four distinct
eigenvalues of this n x n matrix, each must have some multiplicity. The
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problem of multiplicity was solved by McClellan and Parks in [12]. The
multiplicity depends on the value of n modulo 4 and is given by the
following table.

| sizen [ A=4+1][A=—1[A=+4i|A=—i]|

4m m+1 m m m—1
dm+1| m+1 m m m
Im+2| m+1 m+1 m m
Im+3 | m+1 m+1 | m+1 m

Table 4.1: Multiplicities of the eigenvalues A of the unitary Fourier
DFT matrix of size n x n.

Let us consider now a two dimensional m X n signal x. Due to the separability
of the Fourier transform it can be first carried out along the first dimension
and then along the second dimension. Let us consider this procedure in term
of F,.

vee (Fla]) = vec ((Fn (me)T)T)

ec (anng)
ec (FzFy,) .

Vi
Vi

By using the following identity
vec(AY B) = (BT @ A) vec(Y)
we obtain
vec (Flz]) = vec (FzF))
= (Ef @ F,,) vec(z)

= (F, & Fy,) vec(x)
= Fvec(x).

Hence, by the definition of F', we obtain F' = F,, & F,,,, where the operator
@ denotes the Kronecker product. This result can easily be extended to a
multidimensional case. Let x be a k-dimensional signal of size d; X dy X - - - X d,
then the Fourier transform matrix can be built as follows:

F=Fy, ®F, & ®Fy,®Fy,.

The eigenvalues of F' can be computed using the following Lemma
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Lemma 5. Given A and B denoting square matrices of size p X p and q X q
respectively. Let oy, o, . .., oy be the eigenvalues of A and By, B2, . .., 3, those
of B. Then, the eigenvalues of A& B are given by

a;3;, 1=1,2,...,p, j=1,2,...q.

Let us now derive an expression for the Hessian V2E. Recall that V2E =
F* (V?¢) F. We do not have V?¢ in hand, however, we have an operator of
(V2p) v multiplication, given by Equation (4.14). Hence, we can construct
an analogous operator for V2E.

(V2E)t = F* (v2 )
= F* )

_F((

(- AQ
ol @>F+dlag<;:,>F>t
(o -

Hence, we conclude that

-2
VE = F* (diag ( E |> F + diag <|rx|3) F*) : (4.15)

It can be shown that the eigenvalues of the Hessian V?E are given by

At the moment we have no way to know when, in the above equation, the
sign should be plus and when minus. However, we observe that the number
of pluses and minuses is exactly the same as the multiplicity of +1 and -1,
respectively, as the eigenvalues of F'2. Analysis of the Hessian V2FE eigenvalues
leads to two important observations

1. There exist a subspace where the problem becomes convex. For example
if one can guarantee that || at every iteration is (element-wise) greater
than 7, then the Hessian V?FE is guaranteed to have only positive
eigenvalues.
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2. Once a solution is found, i.e., |Z| = r, the eigenvalues of the Hessian
V2E becomes equal to 1+ 1, hence, there are two distinct eigenvalues: 2
and 0, whose multiplicity is defined by the multiplicity of the eigenvalues
of F2. Hence, the problem is severely ill-conditioned and requires some
regularization.

Another important observation is related to the Newton direction used in
optimization. We are looking for a solution of the following equation

(V’E)d=—VE.
Let us consider the product

(V’E)VE = F*
=

(
(
— (v2
(
(

*

=F

2
=2F" 9~ P +Z r—r
|2 |2| z[? |2]
. rz rz 1’z r22(_ rz
—op (22— 2 o (I
A I -1 B -1 L 1 |2
2 2
:2F*<2z—3z+r—z+E—T—z)
1 I -1 N P4 B P
— oF* (22—2ri>
2|
:4F*<z—ri>
2|
— 2VE. (4.16)

Hence, we get an interesting result: the gradient VE is an eigenvector of the
Hessian V2?E with a corresponding eigenvalue 2. That means, actually, that
the gradient search is equivalent to the Newton method in this case.

Hence, the step forcing the Fourier constraints  — 2’ is equal to a step in
the steepest descent direction, as we showed in Equation 4.13 and the same
step is, in effect, a Newton step as follows from Equation 4.16.
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4.3 Efficient Implementation

We would like to expound on the representation of the error functional in the
preceding chapter. Note that we prefer to express the error functional in the
Fourier domain in terms of F'x and not in terms of . Such a representation is
not accidental. This choice is particularly suitable for an efficient optimization
method called Sequential Subspace Optimization (SESOP) [15]. Consider the
objective function we seek to minimize.

E(z) = p(Fx) + (),

where p(F'z) represents the functional corresponding to the Fourier domain
constraints and f(x) is the functional related to the object domain constraints.
The SESOP algorithm sequentially minimizes the objective function over
subspaces spanned by several directions that are chosen in a certain manner.
Possible choices of the directions will be describe later. For the moment let
D be a matrix comprising the M chosen directions as its columns. Thus, at
every iteration we finds a minimizer of E(x) over the subspace spanned by
the columns of M. Hence, the algorithm, in general, can be summarised as
follows

1. Update matrix D, i.e, choose M directions.

2. Find
y* = argmin, (E(r; + Dy)).

3. Update current iterate

Tpp1 = 2 + Dy™.

4. Repeat until convergence.

Let us consider the problem of a subspace optimization

¥(y) = E(x + Dy)

= p(F(x + Dy)) + f(z + Dy)
Fx + FDy) + f(z + Dy)
Fz + Ry) + f(x + Dy)
z+ Ry) + f(xz + Dy).

'
=P
'
'

o~ o~~~

Since the number of search directions M is small we can use a modified Newton
method for finding the minimizer y*. Recall that the Newton method’s search
direction is given by

d=— (V%) Ve,
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Using our results from Section 4.1 we obtain
Vip=Vyp+V, f
=R'Vo+D*Vf
and
2 2 2
Vi =V,o+V, f
= R*V?*pR + D*V*fD,

where V, and VZ denote, accordingly, the gradient and Hessian with respect
to y. Note that the Hessian matrices V2p and V2 f are not computed explicitly.
Instead an operator form is used to compute a matrix-vector product, i.e.,
(V2pR) and (V2fD). Note also that finding a search direction does not
require an (expensive) application of the linear operator F', since the matrices
R and D were pre-computed earlier. A subsequent line search does not require
an application of F' either. Consider a step of size « in direction d

Y(y +ad) = E(x + D(y + ad))
= E(x + Dy + aDd)
= p(F(x + Dy + aDd)) + f(z + Dy + aDd)
= (2 + Ry + aRd) + f(x + Dy + aDd).

Hence, once again, the matrices R and D are known and constant during
the subspace optimization. Therefore, we need only one application of the
linear operator F' per every new direction we add to the subspace and one
application of the adjoint operator F* needed to compute the gradient V.

Let us consider now the choice of the search directions. The simplest choice
is a single direction of the steepest descent. In this case the SESOP becomes,
in effect, the gradient descent method. Next, in addition to the current
gradient, we add the last step direction. This approach can be viewed as a
generalization of the Conjugate Gradients (CG) method. The two methods
coincide in case of a linear quadratic problem. However, they demonstrate
different behaviour for non-linear problems. Narkiss and Zibulevsky [15] argue
that SESOP demonstrates better convergence rates than CG. In practice,
additional directions may be added into the subspace search. One can add, for
example, more previous directions and gradients to speed up the convergence
rate. Note that this scheme requires only two applications of the linear
operator F' and one of the adjoint operator F™* per outer iteration, regardless
of the number of the search directions. Of course, adding more directions will
increase the cost of the subspace minimization, however, one can re-calculate
the Hessian V21 sparingly, using a BFGS update for intermediate calculations.
This modification is planned for future work.

30



Chapter 5

Results

5.1 Convergence rate

Let us demonstrate the convergence rate of our algorithm as compared to
that of the HIO. The result are shown in Figure 5.1.

As can be seen in Figure 5.1, our algorithm demonstrates a significantly
faster convergence rate. However, if we consider the reconstruction quality in
the object domain the picture will be different. Let us look at Figure 5.2 that
depicts the root means square error (RMS) in the object domain. .

As we can see in all cases except “Lena” the HIO algorithm provides better
reconstruction in the object space even though it violates the Fourier domain
constraints significantly. The reason for this phenomena is not yet understood.
However, we can get some intuition if we look at the reconstruction results.
Figure 5.3 demonstrates difference of the images obtained by our method with
the ground truth image. As one can see the “snowflake” and “phantom” images
have (multiple) shifted copies of themselves in the reconstructed images. This
situation is possible as these two images do not have a tight support, especially
the “phantom” image; and a shifted version of an image, has exactly the same
Fourier magnitude. Finding a way to overcome this phenomena is one of our
major goals of future research.

5.2 Robustness

5.2.1 Radius of convergence

Non-convex optimization methods are usually not globally convergent. Hence,
one must start sufficiently close to the solution in order to be able to converge
to the global minimum. Our current experiments demonstrate that the HIO
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Figure 5.1: Convergence rate comparison: Fourier domain
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Figure 5.2: Convergence rate comparison: object domain
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Figure 5.3: Reconstruction results: difference with the ground truth
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algorithm is capable to reconstruct an acceptable image even when started at
arbitrary point. Our algorithm, on the other hand, requires the starting point
to be close to the solution. This probably happens because the HIO algorithm
is not a usual optimization technique or, maybe, it implicitly minimizes
some other functional, because the results of Section 5.1 demonstrate that a
good reconstruction is achieved by the HIO algorithm despite a significant
discrepancy in the Fourier domain. The reasons for such a behaviour and
ways of improvement of our method should be addressed in future research.

5.2.2 Reconstruction from noisy data

Let us now analyze how an imperfect data affects reconstruction quality. It
is important to recognize that in presence of noise the original signal is no
longer a minimizer of the error functional. Hence, it is a common practice
to introduce some prior on the reconstructed image in order to decrease the
negative influence of data noise on the reconstruction quality. The choice of
a good prior is of utmost importance and, ideally, should be chosen to fit the
class of reconstructed images. The prior we used throughout this paper is the
Total Variation (TV) [18],

TV (x) :/]Vx].

TV is generally accepted as a good prior for a broad class of images. Note that
the HIO algorithm does not minimize any specific functional. Our method,
in contrast, has a well defined error measure,

Ep = |[la| —r|*.

The above functional corresponds to the Maximum Likelihood estimate in
case the data (r in this case) is perturbed with additive white Gaussian
noise. Although this assumption is not correct in practice we present it as a
pure mathematical model disconnected from the physical nature of the data.
Figures 5.4, 5.2, and 5.3 demonstrate reconstruction results when the data r
was perturbed with white Gaussian noise with signal to noise ratio (SNR) of
-30dB. As is evident from the images the TV prior is very well suitable for
piece-wise constant images like the phantom image.

Now we consider a model that should match the physical nature of the
problem. Note that we record the scattered wave intensity thus, our data
is, in effect, 72 and not r. In addition, if we consider the particle nature
of the waves, we should observer that the recorded image is based on the
counting statistics of photons or electrons hitting the sensor. The noise of
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(a) original (b) HIO reconstruction: (¢) Our reconstruction:
-11dB SNR -17dB SNR

Figure 5.4: Snowflake reconstruction: noise in r with -30dB SNR

(a) original (b) HIO reconstruction: (¢) Our reconstruction:
-17dB SNR -24dB SNR

Figure 5.5: Lena reconstruction: noise in r with -30dB SNR
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(a) original (b) HIO reconstruction: (¢) Our reconstruction:
-6dB SNR -24dB SNR

Figure 5.6: Phantom reconstruction: noise in r with -30dB SNR

such a process is known to satisfy the Poisson distribution. Therefore a naive
least squares functional, as shown below

Eps(x) = |||#2] - 2|, (5.1)

—T

will be suboptimal. Instead, we have to use another functional that would
satisfy the maximum likelihood condition. Such a functional, suitable for a
Poisson noise in 7% would be

Ep(z) = 2> — rIn (|2]?) . (5.2)

It turns out that even a small amount of noise in 7? degrade the recon-
structed image severely. Figure 5.7 demonstrate the reconstruction we obtain
wtih the HIO method when started with the true image as the initial guess
Figure 5.8 depicts our reconstruction from the same starting point. First,
using the least squares formulation as in Equation 5.1 (shown in Figure 5.8a).
Then, using the functional that is designed for the Poisson noise as in Equa-
tion 5.2 (shown in Figure 5.8b). As is evident from the reconstruction results
we obtain a better estimation using error functionals that were specifically
developed for the noise model. The flexibility of choosing a functional suitable
for the noise model is not possible within the HIO method.
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(a) starting point (b) reconstruction (-16dB)

Figure 5.7: HIO reconstruction from a noisy data. Poisson noise in r? (-54dB

SNR)

(a) Least Squares (b) Possion noise fitted
reconstruction: -21dB SNR reconstruction: -25dB SNR

Figure 5.8: Our reconstruction from a noisy data. Poisson noise in r? (-54db
SNR)
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Chapter 6

Future Work

Our plans for future work are mainly concentrated on three major subjects:
first, we have to improve the running time of the optimization algorithm;
second, we shall find the best way to incorporate additional data into the
existing flow; the last, but very important research area is how to make a
multi-scale version of the algorithm. The purpose of the last improvements is
twofold, first to further improve the running time of the algorithm; second,
to improve its robustness allowing convergence for arbitrary starting point.

6.1 Improving optimization methods

Profiling of our algorithm running time data shows that the main time budget
is spent in the inner loop of the Newton optimization. More specifically,
generating the Hessian-vector multiplication operator and eventual multipli-
cation itself are requiring a significant time. We shall investigate methods
to evaluate the Hessian-vector multiplication only sparingly, intermediate
values can be updated using a BFGS-like update strategy. Note that this
improvement is very general and is not tailored to our problem. Success of
this idea will result in a significantly faster optimization method.

Another possible improvement that has been partially implemented is to
add a smart choice of search vectors. We tested an addition of an approxi-
mation to the Hessian direction as computed by the conjugate gradients and
L-BFGS methods. Addition of these search directions did not prove to be
worthwhile in the original problem, however, the same addition improved
significantly the convexly relaxed version of the problem as described in
Section 6.2.

Another idea that is applicable in general optimization is to test whether
vector extrapolation methods [19, 20| can be applied to the Hessian update
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z-plane z-plane

(a) Non-convex constraint (b) Convex constraint

Figure 6.1: Convex relaxation

schemes like BFGS. In case of success, this may be of great interest to the
optimization community.

6.2 Incorporating additional data (knowledge)

Another question we would like to address is how to incorporate additional
knowledge (if available) into the problem. For example, provided that a
low-resolution image of the sought signal is available from another source.
What would be the best way to use it in our framework? Currently, such
low-resolution images are mainly used for support information. However, it
would be interesting to treat them as images blurred by a known convolution
kernel and then to insert a deconvolution problem, which is known to be well
posed, into our framework, to improve the condition number of the original
problem.

In addition we consider a case where the phases are known approximately,
i.e., there exists a bound on (a part of) the phase values. Say, the true phase
belongs to some given interval [« 3] as shown in Figure 6.1a. In this case we
can convert the problem into a convex one by the technique known as convex
relaxation. Application of this technique to our problem is demonstrated
in 6.1. Instead of forcing a complex number z to lie on the arc shown in
Figure 6.1a we relax our requirement on the modulus letting z belong to the
convex area shown in Figure 6.1b. This manipulation converts the problem
to a convex one.

Unlike the original problem, the convex version is solved very efficiently,
and more importantly, the convex version is globally convergent. Hence, a
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(a) Snowflake - perfect (b) Lena - perfect (c) Phantom -48dB
reconstruction reconstruction reconstruction SNR

Figure 6.2: Reconstruction with convex relaxation (phase uncertainty of 3
radians)

unique solution is obtained for any starting point. Of course, the obtained
minimizer does not represent a correct solution any longer. Hence, we
add the original (non-convex) constraint on the Fourier magnitude with
a relatively small weight. Using this technique we were able to perfectly
reconstruct the snowflake and “Lena” images withing a small number of
iterations. Reconstruction of the phantom image stagnated for some reason,
not yet determined. Hence, a perfect reconstruction was not achieved, however,
the reconstruction quality was very good (-48dB SNR). Reconstructed images
are shown in Figure 6.2. Note that the phase uncertainty was 3 radians. That
makes us believe that after the stagnation problem observed in the phantom
image, is resolved, a perfect reconstruction is possible with only one bit of
information per phase value.

6.3 Multi-Scale approach

We are interested in a multi-scale approach for two reasons. First, this
technique can be used for an accelleration of already existing algorithm, like
HIO. Second, it can be used in our optimizatin problem as a method of finding
a good approximation for the solution. This approximation may be used as a
starting point for our method.

To deploy a multi-scale method one has to provide three basic components.
1. Data restriction method from the rough grid to the fine grid.

2. Data interpolation method from the fine grid to the rought grid.
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3. A relaxation (solution) method that is suitable for the above restriction
and interpolation operators.

At the moment it seems that a proper data restriction is the most challenging
problem. Note that we cannot use only the data corresponding to low
frequencies. This is not poissible since the high-frequency components of a
signal do change the magnitude of the Fourier transform of the low-frequency
components because of the aliasing. We investigated some schemes that keep
the phase difference between two aliased frequencies constant. However, this
work is only preliminary and requires further research.
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Chapter 7

Summary

We presented an optimization method for the phase retrieval problem from
one intensity measurement. Due to high non-linearity and non-convexity of
the problem, the method convergence to the true solution only when started
sufficiently close it. Compared to current methods, like the Hybrid Input-
Outpum algorithm, our method has a smaller convergence radius. However,
our approach allows a great deal of flexibility that is not poissible in the
HIO method. For example, we can easily add priors on the image or, change
the objective functional to fit the noise distribution in the data. These
features allow better reconstruction in presence of a noise in the data. We are
also able to incorporate an additional data into the problem, e.g., a partial
information on the phase. Moreover, with this additional information our
method demonstrates global convergence.

In the future work we shall concentrate on improving the convergence
radius of our method. Multi-scale approach may help as a part of our method
or as an accellerator of already existing methods. Further improvements of
our optimization algorithm may result in a good general algorithm for smooth
optimization.
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