

Principles of MRI EE225E / BI0265

Instructor: Miki Lustig UC Berkeley, EECS

- Administration
 - -<u>http://www-inst.eecs.berkeley.edu/~ee225e/sp12/</u>

Intro to Medical Imaging and MRI

Medical Imaging (Before 1895)

Only way to see is to cut!

Medical Imaging (Post 1895)

- Revolutionized diagnostic medicine
- See internal anatomy
- Visualize function
 - Many modalities
 - Many sources of contrast

Basic Concept

Medical Imaging System Requirements

- Diagnostic contrast
- Sensitivity
- Specificity
- Function
- High Spatial-resolution
- High Temporal-resolution
- Safe
- Fast

- Inexpensive
- Easy to use

- Can't satisfy all
- Many modalities
- Often several used to make diagnosis

Common Imaging Modalities

- Projection X-Ray (Electromagnetic)
- Computed Tomography (Electromagnetic)
- UltraSound (Sound waves)
- Positron Emission Tomography (Nuclear)
- Single-Photon Emission Tomography (Nuclear)
- Magnetic Resonance Imaging (magnetic)

Engineering Advances

1st x-ray (1895)

x-ray today

early CT (1975)

CT today

Engineering Advances

Engineering Advances

early MRI (1978)

MRI today

Projection X-Ray

- Projection Format
- Small Dose
- Fast
- Inexpensive

Projection

Computed Tomography (CT)

- Tomographic
- Fast
- High-Res
- Moderate dose
- •~1M\$

Many Projections

Computed Tomography

x-ray source

Computed Tomography

Gantry rotation

M. Lustig, EECS UC Berkeley

http://www.youtube.com/watch?v=4gklQHM19aY&feature=related

Ultrasound

- Real-time
- Inexpensive
- No-radiation
- Many applications

 Low contrast and penetration

Anatomy vs Function

Nuclear Medicine

- Specific metabolic information (function)
- · Low-res
- High dose
- 1-2M\$

- SPECT: Gamma radiation
- PET: Positron-> Gamma

brain metabolism

Magnetic Resonance Imaging (MRI)

- NMR: Nuclear Magnetic Resonance
- MRI : Magnetic Resonance Imaging
 please don't say MRI imaging!

- MRI is VERY VERY VERY different from CT!
- Cost: 1M-3M, mainly because of the Magnet

- 1946 Felix Bloch (Stanford) Edward Purcell (Harvard) independently discovered NMR. Nobel Prize (Physics) in 1952.
- 1971 Raymond Damadian showed changes in MR parameters (T1 and T2) in cancer. People started thinking about medical NMR applications.
- 1972 Invention of CT by Hounsfield and Cormack. Nobel Prize (Medicine) in 1979.
- 1973 Lauterbur described MRI in a similar way to CT

History

- 1975 Ernst proposed key concepts.
 Nobel prize (Chemistry) 1991.
- 1970's Mansfield contributes key ideas (slice selection)
- 1982 Widespread clinical MRI begins.
- 2003 Lauterbur/Mansfield receive Nobel prize (Medicine) for their contributions.

MR Imaging

- Magnetic resonance imaging has revolutionized medicine
- Directly visualizes soft tissues in 3D
- Wide range of contrast mechanisms
 - Tissue character (solid, soft, liquid, fat, ...)
 - Diffusion
 - Temperature
 - Flow, velocity
 - Oxygen Saturation

Neuro Examples

Many different contrasts available

K. Pauly, G. Gold Stanford Rad 220

Clinical Example

No Contrast Agent

Contrast Agent

M. Lustig, EECS UC BerkerPauly, G. Gold, RAD220

Body Examples

M. Lustig, EECS UC BerkerPauly, G. Gold, RAD220

Angiography

contrast dynamics

gated

M. Lustig, utesy Juan Santos

Flow Imaging Examples

Real-time color flow

M. Lustig, EECS UC Berkeley

*Juan Santos, Stanford *Marc Alley, Stanford

Diffusion Examples

T2 weighted standard MRI 3 hours after a stroke

diffusion weighted MRI 3 hours after a stroke

*Dr. Steven Warach, Beth Israel Hospital, Boston, MA *The Virtual Hospital (www.vh.org); TH Williams, N Gluhbegovic, JY Jew *Brian Wandell, Stanford

Functional MRI Example

Sensitivity to blood oxygenation - response to brain activity

*Karla Miller, Oxford *Mian Watig !!, Start God UC Berkeley

Taking fMRI further

fMRI decoding : "Mind Reading"
 Gallant Lab, UC Berkeley

Presented movie

Reconstructed movie (AHP)

Spectroscopy Imaging

- Functional Imaging (metabolism)
- Also other nuclei (13C, phosphor)

*K. Pauly, G. Gold, RAD220

*K. Pauly, G. Gold, RAD220

Spin-Echo vs Gradient Echo

*K. Pauly, G. Gold, RAD220

Chemical-shift

Metal Artifacts

*images, courtesy of Brian Hargreaves

Motion Artifacts

How Does MRI Work?

- Magnetic Polarization
 -- Very strong uniform magnet
- Excitation
 - -- Very powerful RF transmitter
- Acquisition
 - -- Location is encoded by gradient magnetic fields
 - -- Very powerful audio amps

Polarization

- Protons have a magnetic moment
- Protons have spins
- Like rotating magnets

Polarization

- Body has a lot of protons
- In a strong magnetic field BO, spins align with BO giving a net magnetization

*Graphic rendering Bill Overall

Polarizing Magnet

- 0.1 to 12 Tesla
- 0.5 to 3 T common
- 1 T is 10,000 Gauss
- Earth's field is 0.5G
- Typically a superconducting magnet

Polarizaion

Polarization results in net magnetization

Free Precession

- Much like a spinning top
- Frequency proportional to the field
- f = 64MhZ @ 1.5T

MIT physics demos

Free Precession

- Precession induces magnetic flux
- Flux induces voltage in a coil

Intro to MRI - The NMR signal

- Signal from ¹H (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

Intro to MRI - The NMR signal

- Signal from ¹H (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

Intro to MRI - Imaging

Intro to MRI - Imaging

- B_0 Missing spatial information
- Add gradient field, G

Intro to MRI - Imaging

- B_0 Missing spatial information •
- Add gradient field, G •
- Mapping: • spatial position \Rightarrow frequency

Tuning Fork Demo

MR Imaging

Fourier

k-space (Raw Data)

Image

k-space Sampling - resolution

The Contractory

MRI is all about contrast.....

15 A.

String to

http://thundafunda.com

Relaxation

The Toilette Analogy (©2009 Al Macovski)

• Excitation = Flush

T2 = Active flushing
~5 second

T1 = Refilling time
 ~1min

The Toilette Analogy, Steady-state

• Flush - Refill

- Flush continuously

 Never fully refills
 After a while, same from flush to flush
 "Steady state"
- Timing creates
 contrast

Contrast

T1

House Prefers T2

You -- Get cervical, thoracic and lumbar T2 weighted Fast Spin-Echo MRIs

