
EE227A 9/9/10 or 9/13/10

Lab #2

1. Creating a new function in CVX. We consider the convex, monotone function f with
values f(x) = 2x+ 3x1.2 + 4.1x2.3, and domain R+. Let g be the inverse function of f :
for a given y > 0, g(y) is the (unique) value of t such that f(t) = y. There is no closed
form expression for g.

(a) Show that, for a given y ∈ R, g(y) is the optimal value of the problem

max
t

t : f(t) ≤ y,

with the standard convention that the optimal value is −∞ if the problem is not
feasible, that is, y < 0.

(b) Show that g is concave, monotone increasing, and with domain R+. Write a CVX
code that implements g.

(c) Write a CVX code that solves the following problem:

min
x,y

x2

y
+ 4x+ 5y : g(y) + 2g(y) ≥ 2.

2. Exploring nearly optimal points. An optimization algorithm will find an optimal point
for a problem, provided the problem is feasible. It is often useful to explore the set
of nearly optimal points. When a problem has a ‘strong minimum’, the set of nearly
optimal points is small; all such points are close to the original optimal point found.
At the other extreme, a problem can have a ‘soft minimum’, which means that there
are many points, some quite far from the original optimal point found, that are feasible
and have nearly optimal objective value. In this problem you will use a typical method
to explore the set of nearly optimal points.

We start by finding the optimal value p? of the given problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

as well as an optimal point x? ∈ Rn. We then pick a small positive number ε, and a
vector c ∈ Rn, and solve the problem

minimize cTx
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
f0(x) ≤ p? + ε.
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Note that any feasible point for this problem is ε-suboptimal for the original problem.
Solving this problem multiple times, with different c’s, will generate (perhaps different)
ε-suboptimal points. If the problem has a strong minimum, these points will all be
close to each other; if the problem has a weak minimum, they can be quite different.

There are different strategies for choosing c in these experiments. The simplest is
to choose the c’s randomly; another method is to choose c to have the form ±ei,
for i = 1, . . . , n. (This method gives the ‘range’ of each component of x, over the
ε-suboptimal set.)

You will carry out this method for the following problem, to determine whether it has
a strong minimum or a weak minimum. You can generate the vectors c randomly, with
enough samples for you to come to your conclusion. You can pick ε = 0.01p?, which
means that we are considering the set of 1% suboptimal points.

The problem is a minimum fuel optimal control problem for a vehicle moving in R2.
The position at time kh is given by p(k) ∈ R2, and the velocity by v(k) ∈ R2, for
k = 1, . . . , K. Here h > 0 is the sampling period. These are related by the equations

p(k + 1) = p(k) + hv(k), v(k + 1) = (1− α)v(k) + (h/m)f(k), k = 1, . . . , K − 1,

where f(k) ∈ R2 is the force applied to the vehicle at time kh, m > 0 is the vehicle
mass, and α ∈ (0, 1) models drag on the vehicle; in the absense of any other force,
the vehicle velocity decreases by the factor 1 − α in each discretized time interval.
(These formulas are approximations of more accurate formulas that involve matrix
exponentials.)

The force comes from two thrusters, and from gravity:

f(k) =

[
cos θ1
sin θ1

]
u1(k) +

[
cos θ2
sin θ2

]
u2(k) +

[
0
−mg

]
, k = 1, . . . , K − 1.

Here u1(k) ∈ R and u2(k) ∈ R are the (nonnegative) thruster force magnitudes, θ1
and θ2 are the directions of the thrust forces, and g = 10 is the constant acceleration
due to gravity.

The total fuel use is

F =
K−1∑
k=1

(u1(k) + u2(k)) .

(Recall that u1(k) ≥ 0, u2(k) ≥ 0.)

The problem is to minimize fuel use subject to the initial condition p(1) = 0, v(1) = 0,
and the way-point constraints

p(ki) = wi, i = 1, . . . ,M.

(These state that at the time hki, the vehicle must pass through the location wi ∈ R2.)
In addition, we require that the vehicle should remain in a square operating region,

‖p(k)‖∞ ≤ Pmax, k = 1, . . . , K.
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Both parts of this problem concern the specific problem instance with data given in
thrusters_data.m.

(a) Find an optimal trajectory, and the associated minimum fuel use p?. Plot the
trajectory p(k) in R2 (i.e., in the p1, p2 plane). Verify that it passes through the
way-points.

(b) Generate several 1% suboptimal trajectories using the general method described
above, and plot the associated trajectories in R2. Would you say this problem
has a strong minimum, or a weak minimum?
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