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Lab #3 Solutions

1. The consistency condition holds if and only if

∃ x : ‖x− xi‖2 ≤ Ri, i = 1, . . . ,m.

We can formulate this as an optimization problem with constant, for example zero,
objective:

min
x

0 : ‖x− xi‖2 ≤ Ri, i = 1, . . . ,m.

The above is an SOCP. On exit, a solver such as CVX will provide either a feasible
point xf , or determine (unambiguously) that there is no feasible point.

cvx_begin

variable xfeas(2,1)

minimize( 0 )

subject to

for i = 1:m,

R(i) >= norm(xfeas-X(:,i),2);

end

cvx_end

if ~isfinite(cvx_optval), xfeas = []; end

2. As seen in Fig. 1, with one measurement added, the data set is inconsistent.

We solve the problem

min
x,δ
‖δ‖ : δ ≥ 0, ‖x− xi‖2 ≤ Ri + δi, i = 1, . . . , 4,

with the norm ‖·‖ being the Euclidean norm and then the l1-norm. We may ignore the
sign constraint on δ if we do not want to assume that the errors are over-estimation
errors only. The above problem can be expressed as an SOCP in both cases. The
qualitative behavior of the solution depends on the choice of the norm.

The following snippet assumes that the integer p ∈ {1, 2} exists in matlab’s workspace.

cvx_begin

variable delta(m+1,1)

variable x(2,1)

minimize( norm(delta,p) )
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Figure 1: Inconsistent data set.

subject to

for i = 1:m+1,

R(i) + delta(i)>= norm(x-X(:,i),2);

end

%delta >= 0; % sign constraints disabled

cvx_end

Choosing an l1 norm will tend to make the smallest number of adjustment necessary.
This would make sense if we believe that a few of our measurements are outliers, and
due to faulty sensors.

4. We first focus on the problem of finding the largest radius of a sphere contained in the
intersection. It is easy to check that a sphere of center x0 and radius R0 is contained in
a sphere of center xi and radius Ri if and only if the differences in the radiuses exceeds
the distance between the centers:

Ri ≥ R0 + ‖xi − x0‖2.

Our inner approximation problem then becomes the SOCP

max
x0,R0

R0 : Ri ≥ R0 + ‖xi − x0‖2, i = 1, . . . ,m.

We note that the measurements are inconsistent if and only if at optimum, R∗
0 < 0.

This is the same as saying that there is no point x0 which satisfies the constraints
‖xi − x0‖2 ≤ Ri, i = 1, . . . ,m.

5. We simply ensure that the vertices of a box with size ρ are inside the intersection, and
then maximize ρ. In 2D or 3D, this is easy, as there is a moderate number of vertices.
The problem is written

max
ρ,x0

ρ : ‖x0 + ρvk − xi‖2 ≤ Ri, i = 1, . . . ,m, k = 1, . . . , K.
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3. Figure 2: If the norm chosen is the Euclidean one, we are minimizing the sum of the
squares of the adjustments (increases) that are necessary to make our measurements
consistent. This results in non-zero adjustments for all the measurements, and the
new (unique) intersection point (in green) is far away from the initial intersection.

In the above, K is the number of vertices of the box (K = 2 in 2D, K = 8 in 3D), and
vk, k = 1, . . . , K are the vertices of the unit box, that is, the vectors with elements ±1.
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Figure 3: Identifying a faulty sensor that resulted in inconsistent measurements:
here we have solved the minimum l1-norm of adjustments necessary to make the
measurements consistent. The approach identifies the offending measurement, since
the optimal adjustment vector δ is almost zero except for its last component, which
corresponds to the fourth sensor. We observe, however, that the indentification is
not perfect, as the measurement of sensor 1 is also adjusted, albeit only slightly.
This is due to the fact that the l1-norm approach is a only a heuristic to solve
cardinality minimization problems.

Figure 4: Inner spherical approximation to the intersection. This provides an
estimated point (the center of the inner shpere), with an /optimistic/ estimate of
the uncertainty around it.

4



Figure 5: Inner box approximation to the intersection. This provides an estimated
point (the center of the inner box), with an /optimistic/ estimate of the uncertainty
around it. Here, the uncertainty is given as two intervals of confidence on each of
the coordinates of the estimated point.
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