HW #1 Due March 10 (Thursday) in class

- 1. An infrared intersubband photodetector is made of p-doped GaAs quantum wells. The hole effective mass is $m_b^* = 0.5m_0$, and the refractive index is 3.5.
 - a. Find the width of the quantum well so the absorption peak is at $10 \mu m$ wavelength.
 - b. Assume a lorentzian lineshape with an intraband scattering time of $\tau = 0.1$ ps (note $\Gamma = \frac{2\hbar}{\tau_{in}}$). Find the peak absorption coefficient for a doping concentration of 10^{18} cm⁻³.
 - c. What is the full-width-at-half-maximum width of the absorption spectrum?
 - d. Plot the absorption spectra. Please use your favorite numeric program to calculate and plot the spectrum (no hand sketch). Be quantitative in both axes.
 - e. What is the optimum doping concentration to achieve maximum absorption coefficient?
- 2. Consider an optical transition from E_a to E_b in a 10-nm wide GaAs single quantum well. Here, E_a and E_b are related by an optical transition (i.e., they have the same k). Use the following effective masses: $m_e^* = 0.067 m_0$ and $m_h^* = 0.5 m_0$. The bandgap energy of GaAs is 1.42 eV. Use infinite potential well for the calculation. Use the valence band edge as the reference for all energies (i.e., $E_V = 0$ eV). For matrix element, use $E_p = 25.7$ eV. Refractive index $n_r = 3.5$.
 - a. Find E_a and E_b as functions of the photon energy.
 - b. Derive the Fermi-Dirac distribution for electrons in the first conduction subband with a quasi-Fermi level of F_C , $f_C(E_b(\hbar\omega))$, as a function of $\hbar\omega$.
 - c. Similarly, derive the Fermi-Dirac distribution for electrons in the first valance subband with a quasi-Fermi level of F_V , $f_V(E_a(\hbar\omega))$, as a function of $\hbar\omega$.
 - d. Calculate and plot optical gain spectra for the GaAs quantum well for photon energy from 1.4 eV to 2 eV at T = 300 K. Plot the spectra for two quasi Fermi level separations: $\Delta F = 1.5$ and 1.8 eV. (Note: you need to include the second sub-band for the larger ΔF).
 - e. Calculate and plot the spontaneous emission spectra for the GaAs quantum well for photon energy from 1.4 eV to 2 eV at T = 300 K. Plot the spectra for two quasi Fermi level separations: $\Delta F = 1.5$ and 1.8 eV.