HW #4 (For practice only. You don't have to turn it in.)

1. Use the parameters in Appendix K of Chuang's book (Table on next page), calculate the conduction, heavy-hole, and light-hole band energies for $In_{1-x}Ga_xAs/In_{0.52}Al_{0.48}As$ quantum well structures where the barrier $In_{0.52}Al_{0.48}As$ is lattice-matched to InP substrate, for x = 0.7 (tensile strained)?

Note: Use linear interpolation for the material parameters of $In_{1-x}Ga_xAs$. For example, $C_{11}(In_{1-x}Ga_xAs) = x \cdot C_{11}(GaAs) + (1-x) \cdot C_{11}(InAs)$

- 2. Using infinite potential well model, and assume all quantum wells are 10 nm thick, find the electron-heavy hole ($E_{e1} E_{HH1}$) and electron-light hole ($E_{e1} E_{LH1}$) transition energies for the for $In_{0.3}Ga_{0.7}As$ (same composition as Prob. 1) quantum well.
- 3. Find the in-plane effective masses of the heavy and light holes for the quantum well in Problem 2. What is the *ratio* of the *peak optical gain* obtainable for E_{hh1}^{el} and E_{lh1}^{el} in this quantum well?

Table K.2 Important Band Structure Parameters^{a-f} for GaAs, AlAs, InAs, InP, and GaP

	Materials				
	GaAs	AlAs	InAs	InP	GaP
Parameters					
a_0 (Å)	5.6533	5.6600	6.0584	5.8688	5.4505
$E_{g}(eV)$	`				
0 K	1.519	3.13	0.42	1.424	2.90
		2.229*		-	2.35*
300 K	1.424	3.03	0.354	1.344	2.78
		2.168*			2.27*
Δ (eV)	0.34	0.28	0.38	0.11	0.08
$E_{v,\mathrm{av}}\left(\mathrm{eV}\right)$	-6.92	-7.49	-6.67	-7.04	-7.40
Optical matrix	25.7	21.1	22.2	20.7	22.2
parameter E_p (eV)	(25.0)f			$(16.7)^{f}$. '
Deformation potentials (eV)				
a_c (eV)	-7.17	-5.64	-5.08	-5.04	-7.14
a_{ν} (eV)	1.16	2.47	1.00	1.27	1.70
$a = a_c - a_v \text{ (eV)} .$	-8.33	-8.11	-6.08	-6.31	-8.83
b (eV)	-1.7	-1.5	-1.8	-1.7	-1.8
d (eV)	-4.55	-3.4	-3.6	-5.6	-4.5
$C_{11} (10^{11} \text{ dyne/cm}^2)$	11.879	12.5	8.329	10.11	14.05
$C_{12} (10^{11} \text{ dyne/cm}^2)$	5.376	5.34	4.526	5.61	6.203
$C_{44} (10^{11} \text{ dyne/cm}^2)$	5.94	5.42	3.96	4.56	7.033
Effective masses		,	_		
m_e^*/m_0	0.067	0.15	0.023	0.077	0.25
m_{hh}^*/m_0	0.50	0.79	0.40	0.60	0.67
m_{lh}^*/m_0	0.087	0.15	0.026	0.12	0.17
$m_{hh,z}/m_0 = \frac{1}{\gamma_1 - 2\gamma_2}$ $m_{lh,z}/m_0 = \frac{1}{\gamma_1 + 2\gamma_2}$	0.333	0.478	0.263	0.606	0.326
$m_{lh,z}/m_0 = \frac{1}{\gamma_1 + 2\gamma_2}$	0.094	0.208	0.027	0.121	0.199
γ_1	6.8 (6.85)	3.45	20.4	4.95	4.05
γ_2	1.9 (2.1)	0.68	8.3	1.65	0.49