
Homework 1

1. (a) Find the quality (Q) factor of the cavity.

Q = ωτ =
2πc

λ0
τ

τ =
n

αc

α = αm + αi =
1

2L
ln

1

R1R2
+ αi

Using αi = 10 cm−1, R1 = 1, R2 = 0.99, and L = 1µm, we find

αm = 50.25 cm−1,

α = 60.25 cm−1.

Plugging in, and using λ0 = 1µm and n = 3.5, we find

Q =
2π�c

λ0

n

α�c
= 3650.

(b) Find the threshold gain and quantum efficiency of the laser.

gth =
α

Γ
= 60.25 cm−1

using α from before and Γ = 1.

η =
αm

αi + αm
= 0.834

using αm and αi from before.

2. (a) What is the total Q of the cavity?

Start with the definition of Q:

Q = ω
E

Ptot
= ω

E

Pr + Pm + Ps
,

where Ptot is total power lost, and Pr, Pm, and Ps are power lost in
radiation, metal, and semiconductor respectively. We also have

Pm = ω
0.3E

Qm
,

Pr = ω
E

Qr
,

Ps = 0,
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where Qm = 50 and Qr = 500. Plugging these in and simplifying,
we get

Q = ω
E

0.3ωE/Qm + ωE/Qr

=
1

0.3/Qm + 1/Qr

= 125.

(b) What is the threshold gain and quantum efficiency of the laser?

gth =
α

Γ

=
2πn

λ0QΓ

= 2154 cm−1,

using n = 3, λ0 = 1µm, and Γ = 0.7, since 70% of the energy is in
the semiconductor, and only the semiconductor experiences gain.

η =
Pr

Ptot
=

Q

Qr
= 0.25

3. (a) Use the energy reference below (i.e, EV = 0 and EC = Eg, the
bandgap energy), find E1 and E2 as functions of the photon energy,
h̄ω.

E1 = − h̄
2k2

2m∗
h

E2 = Eg +
h̄2k2

2m∗
e

Subtract E2 and E1 and equate to h̄ω:

E2 − E1 = h̄ω

= Eg +
h̄2k2

2

(
1

m∗
e

+
1

m∗
h

)
= Eg +

h̄2k2

2m∗
r

Rewriting E1 and E2 in terms of m∗
r and using the above equation,

we get:

E1 = − h̄
2k2

2m∗
r

m∗
r

m∗
h

= −m
∗
r

m∗
h

(h̄ω − Eg)
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E2 = Eg +
h̄2k2

2m∗
r

m∗
r

m∗
e

= Eg + (h̄ω − Eg)
m∗

r

m∗
e

(b) Derive fC(E2(h̄ω)) as a function of h̄ω.

fC(E2) =
1

1 + e(E2−FC)/kT

=
1

1 + e

(
Eg+(h̄ω−Eg)

m∗
r

m∗
e
−FC

)
/kT

,

plugging in for E2 from above.

(c) Derive fV (E1(h̄ω)) as a function of h̄ω.

fV (E1) =
1

1 + e(E1−FV )/kT

=
1

1 + e

(
−m∗

r
m∗

h
(h̄ω−Eg)−FV

)
/kT

(d) Calculate and plot the emission probability fe(h̄ω) = fC(h̄ω)(1 −
fV (h̄ω)) for photon energies from 0.8 to 1.5 eV. Plot for two temper-
atures: T = 0 and T = 300 K.

Simply plug in fC and fV found above:

fe(h̄ω) =
1

1 + e

(
Eg+(h̄ω−Eg)

m∗
r

m∗
e
−FC

)
/kT

1− 1

1 + e

(
−m∗

r
m∗

h
(h̄ω−Eg)−FV

)
/kT


To use this equation we must find FC and FV .

Since FC − FV > Eg, FC and/or FV is degenerate. Since m∗
e <

m∗
h, electrons are degenerate: FC > Eg. Assume holes are also

degenerate: FV < 0. Then we have

n ∝ NC(FC − Eg)3/2 ∝ m∗3/2
e (FC − Eg)3/2

p ∝ NV (−FV )3/2 ∝ m∗3/2
h (−FV )3/2

with the same proportionality factor for n and p. Since n = p, we
have

m∗
h

m∗
e

=
FC − Eg

−FV

4 =
FV + 1.2eV − 1eV

−FV

−4FV = FV + 0.2eV

FV = −0.04eV

FC = FV + 1.2eV = 1.16eV.
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Figure 1: fe vs h̄ω (eV) at T = 0K.

Note that FV < 0, justifying our original assumption.

fe is plotted in Figs. 1 and 2.

(e) Repeat part d) for the Fermi inversion factor fg(h̄ω) = fC(h̄ω) −
fV (h̄ω).

fg(h̄ω) =
1

1 + e

(
Eg+(h̄ω−Eg)

m∗
r

m∗
e
−FC

)
/kT
− 1

1 + e

(
−m∗

r
m∗

h
(h̄ω−Eg)−FV

)
/kT

fg is plotted in Figs. 3 and 4.

(f) Plot the gain spectra for T = 0 and T = 300 K for the condition
given in d).

g(h̄ω) = C0 |ê · p|2 ρr(h̄ω − Eg)fg(h̄ω)

C0 =
πe2

ncε0m2
0ω

|ê · p|2 =
m0

6
Ep, Ep = 25.7eV

ρr(h̄ω − Eg) = H(h̄ω − Eg)
1

2π2

(
2m∗

r

h̄2

)3/2√
h̄ω − Eg

fg(h̄ω) = fC(h̄ω)− fV (h̄ω)

Assuming n = 3.5, g(h̄ω) is plotted in Figs. 5 and 6.
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Figure 2: fe vs h̄ω (eV) at T = 300K.

Figure 3: fg vs h̄ω (eV) at T = 0K.
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Figure 4: fg vs h̄ω (eV) at T = 300K.

Figure 5: g (cm−1) vs h̄ω (eV) at T = 0K.
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Figure 6: g (cm−1) vs h̄ω (eV) at T = 300K.

(g) Plot the spontaneous emission spectra for T = 0 and T = 300 K for
the condition given in d).

rspon(h̄ω) =
8πn2(h̄ω)2

h3c2
fe(h̄ω)

fg(h̄ω)
g(h̄ω)

rspon is plotted in Figs. 7 and 8.
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Figure 7: rspon (eV−1um−3s−1) vs h̄ω (eV) at T = 0K.

Figure 8: rspon (eV−1um−3s−1) vs h̄ω (eV) at T = 300K.
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