EE 232	Midterm Examination-1	Fall 2009
10/8/2009	EE 232 – Lightwave Devices	Prof. Ming Wu

- If you need additional conditions to solve a problem, please write down your assumptions.
- Answer in the space below the problem. If you need additional space, you can use the overflow pages
- in the back. Please indicate which page the answer continues in the lower-right corner.
- Please put a square box around your final answers for each problem.

Global Parameters:

Unless stated otherwise in the problem, use the following values for all problems:

Optical matrix element:	$M_b^2 = (m_0/6)E_p$, and $E_p = 24 \mathrm{eV}$
Bandgap energy:	$E_g = 1 \text{ eV}$
Relative dielectric constant:	$\varepsilon_r = 10$
Refractive index:	$n_r = 3.1$

Commonly used constants:

$\hbar = 1.054 \times 10^{-34} \text{ J} \cdot \text{s}$	$q = 1.6 \times 10^{-19} \text{ C}$	$m_0 = 9.11 \times 10^{-31} \text{ kg}$
$k_B T = 0.026 \text{ eV}$ at 300K	$k_B = 1.38 \times 10^{-23}$ J/K	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$

Your Name	
Student ID #	
Signature	

Problem	Points	Points Earned
1)	30	
2)*	40	
3)	30	
Total	100	

- 1. Consider a quantum well with a direct-bandgap semiconductor whose electron and hole effective masses are both equal to $0.5 m_0$. The interband transition energy from m=1 to n=1 is 1eV. The well width is 10 nm.
 - a) What is the maximum optical gain of the semiconductor when the separation of the quasi-Fermi levels is 52 meV above the transition energy? Assume T = 0 K.
 - b) What is the spectral width of the optical gain?
 - c) What are the electron and hole concentrations for the condition in (a)?
 - d) What is the maximum optical gain for the condition in (a) but at room temperature (T = 300 K)? (*Hint: You can use linear approximation for Fermi inversion factor around* $\hbar \omega = \Delta F$)
 - e) What is the wavelength of the peak gain in (d)?
 - f) What are the electron and hole concentrations for the condition in (d)?

2. Consider two semiconductors with the following energy band diagrams:

Both semiconductors have the same bandgap energy (1 eV) and equal optical matrix element.

- a) Find the *ratio* of their peak optical gains at T = 0 K when both semiconductors are biased to have the same separation of quasi-Fermi levels (and $\Delta F > E_o$)?
- b) How does the *ratio* in (a) change at T = 300K?
- c) What is the *ratio* of the electron concentrations for the condition in (a)?
- d) Which semiconductor has lower carrier concentration at Bernard-Duraffourg condition (also called transparency condition)? Explain your choice.
 (*Hint: Use Boltzmann approximation if the quasi-Fermi level is right on band edge*).

- 3. Intersubband quantum well infrared photodetector (QWIP) can be made by either N-doped or P-doped quantum wells, as shown on the right. The effective masses of the quantum well materials are shown in the figure.
 - a) What are the widths of the quantum wells required to achieve a peak detection wavelength of 5µm?
 - b) Find the *ratio* of the *maximum* absorption coefficients for these two QWIPs.

c) Find the *ratio* of the *minimum* doping concentrations required to achieve maximum absorption coefficients in (b), i.e., N-doping concentration in Semiconductor A / P-doping concentration in Semiconductor B.