(a) Use the energy reference below (i.e, $E_{V}=0$ and $E_{C}=E_{g}$, the bandgap energy), find E_{1} and E_{2} as functions of the photon energy, $\hbar \omega$.

$$
\begin{aligned}
& E_{1}=-\frac{\hbar^{2} k^{2}}{2 m_{h}^{*}} \\
& E_{2}=E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{e}^{*}}
\end{aligned}
$$

Subtract E_{2} and E_{1} and equate to $\hbar \omega$:

$$
\begin{aligned}
E_{2}-E_{1} & =\hbar \omega \\
& =E_{g}+\frac{\hbar^{2} k^{2}}{2}\left(\frac{1}{m_{e}^{*}}+\frac{1}{m_{h}^{*}}\right) \\
& =E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}}
\end{aligned}
$$

Rewriting E_{1} and E_{2} in terms of m_{r}^{*} and using the above equation, we get:

$$
\begin{aligned}
E_{1} & =-\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}} \frac{m_{r}^{*}}{m_{h}^{*}} \\
& =-\frac{m_{r}^{*}}{m_{h}^{*}}\left(\hbar \omega-E_{g}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{2} & =E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}} \frac{m_{r}^{*}}{m_{e}^{*}} \\
& =E_{g}+\left(\hbar \omega-E_{g}\right) \frac{m_{r}^{*}}{m_{e}^{*}}
\end{aligned}
$$

(b) Derive $f_{C}\left(E_{2}(\hbar \omega)\right)$ as a function of $\hbar \omega$.

$$
\begin{aligned}
f_{C}\left(E_{2}\right) & =\frac{1}{1+e^{\left(E_{2}-F_{C}\right) / k T}} \\
& =\frac{1}{1+e^{\left(E_{g}+\left(\hbar \omega-E_{g}\right) \frac{m^{*}}{m_{e}^{*}}-F_{C}\right) / k T}},
\end{aligned}
$$

plugging in for E_{2} from above.
(c) Derive $f_{V}\left(E_{1}(\hbar \omega)\right)$ as a function of $\hbar \omega$.

$$
\begin{aligned}
f_{V}\left(E_{1}\right) & =\frac{1}{1+e^{\left(E_{1}-F_{V}\right) / k T}} \\
& =\frac{1}{1+e^{\left(-\frac{m_{⿱}^{*}}{m_{\hbar}^{*}}\left(\hbar \omega-E_{g}\right)-F_{V}\right) / k T}}
\end{aligned}
$$

(d) Calculate and plot the emission probability $f_{e}(\hbar \omega)=f_{C}(\hbar \omega)(1-$ $\left.f_{V}(\hbar \omega)\right)$ for photon energies from 0.8 to 1.5 eV . Plot for two temperatures: $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$.
Simply plug in f_{C} and f_{V} found above:

$$
f_{e}(\hbar \omega)=\frac{1}{1+e^{\left(E_{g}+\left(\hbar \omega-E_{g}\right) \frac{m_{*}^{*}}{m_{e}^{*}}-F_{C}\right) / k T}}\left(1-\frac{1}{1+e^{\left(-\frac{m_{⿳}^{*}}{m_{\hbar}^{*}}\left(\hbar \omega-E_{g}\right)-F_{V}\right) / k T}}\right)
$$

To use this equation we must find F_{C} and F_{V}.
Since $F_{C}-F_{V}>E_{g}, F_{C}$ and/or F_{V} is degenerate. Since $m_{e}^{*}<$ m_{h}^{*}, electrons are degenerate: $F_{C}>E_{g}$. Assume holes are also degenerate: $F_{V}<0$. Then we have

$$
\begin{aligned}
& n \propto N_{C}\left(F_{C}-E_{g}\right)^{3 / 2} \propto m_{e}^{* 3 / 2}\left(F_{C}-E_{g}\right)^{3 / 2} \\
& p \propto N_{V}\left(-F_{V}\right)^{3 / 2} \propto m_{h}^{* 3 / 2}\left(-F_{V}\right)^{3 / 2}
\end{aligned}
$$

with the same proportionality factor for n and p. Since $n=p$, we have

$$
\begin{aligned}
\frac{m_{h}^{*}}{m_{e}^{*}} & =\frac{F_{C}-E_{g}}{-F_{V}} \\
4 & =\frac{F_{V}+1.2 \mathrm{eV}-1 \mathrm{eV}}{-F_{V}} \\
-4 F_{V} & =F_{V}+0.2 \mathrm{eV} \\
F_{V} & =-0.04 \mathrm{eV} \\
F_{C} & =F_{V}+1.2 \mathrm{eV}=1.16 \mathrm{eV} .
\end{aligned}
$$

Figure 1: f_{e} vs $\hbar \omega(\mathrm{eV})$ at $T=0 K$.

Note that $F_{V}<0$, justifying our original assumption. f_{e} is plotted in Figs. 1 and 2.
(e) Repeat part d) for the Fermi inversion factor $f_{g}(\hbar \omega)=f_{C}(\hbar \omega)-$ $f_{V}(\hbar \omega)$.

$$
f_{g}(\hbar \omega)=\frac{1}{1+e^{\left(E_{g}+\left(\hbar \omega-E_{g}\right) \frac{m_{*}^{*}}{m_{e}^{*}}-F_{C}\right) / k T}}-\frac{1}{1+e^{\left(-\frac{m_{r}^{*}}{m_{h}^{*}}\left(\hbar \omega-E_{g}\right)-F_{V}\right) / k T}}
$$

f_{g} is plotted in Figs. 3 and 4.
(f) Plot the gain spectra for $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$ for the condition given in d).

$$
\begin{gathered}
g(\hbar \omega)=C_{0}|\hat{\mathbf{e}} \cdot \mathbf{p}|^{2} \rho_{r}\left(\hbar \omega-E_{g}\right) f_{g}(\hbar \omega) \\
C_{0}=\frac{\pi e^{2}}{n c \epsilon_{0} m_{0}^{2} \omega} \\
|\hat{\mathbf{e}} \cdot \mathbf{p}|^{2}=\frac{m_{0}}{6} E_{p}, E_{p}=25.7 \mathrm{eV} \\
\rho_{r}\left(\hbar \omega-E_{g}\right)=H\left(\hbar \omega-E_{g}\right) \frac{1}{2 \pi^{2}}\left(\frac{2 m_{r}^{*}}{\hbar^{2}}\right)^{3 / 2} \sqrt{\hbar \omega-E_{g}} \\
f_{g}(\hbar \omega)=f_{C}(\hbar \omega)-f_{V}(\hbar \omega)
\end{gathered}
$$

Assuming $n=3.5, g(\hbar \omega)$ is plotted in Figs. 5 and 6.

Figure 2: f_{e} vs $\hbar \omega(\mathrm{eV})$ at $T=300 K$.

Figure 3: f_{g} vs $\hbar \omega(\mathrm{eV})$ at $T=0 K$.

Figure 4: f_{g} vs $\hbar \omega(\mathrm{eV})$ at $T=300 K$.

Figure 5: $g\left(\mathrm{~cm}^{-1}\right)$ vs $\hbar \omega(\mathrm{eV})$ at $T=0 K$.

Figure 6: $g\left(\mathrm{~cm}^{-1}\right)$ vs $\hbar \omega(\mathrm{eV})$ at $T=300 K$.
(g) Plot the spontaneous emission spectra for $\mathrm{T}=0$ and $\mathrm{T}=300 \mathrm{~K}$ for the condition given in d).

$$
r_{\mathrm{spon}}(\hbar \omega)=\frac{8 \pi n^{2}(\hbar \omega)^{2}}{h^{3} c^{2}} \frac{f_{e}(\hbar \omega)}{f_{g}(\hbar \omega)} g(\hbar \omega)
$$

$r_{\text {spon }}$ is plotted in Figs. 7 and 8.

Figure 7: $r_{\text {spon }}\left(\mathrm{eV}^{-1} \mathrm{um}^{-3} \mathrm{~s}^{-1}\right)$ vs $\hbar \omega(\mathrm{eV})$ at $T=0 K$.

Figure 8: $r_{\text {spon }}\left(\mathrm{eV}^{-1} \mathrm{um}^{-3} \mathrm{~s}^{-1}\right)$ vs $\hbar \omega(\mathrm{eV})$ at $T=300 K$.

