EE 232, HW#2 Solution

(a) Use the energy reference below (i.e, $E_V = 0$ and $E_C = E_g$, the bandgap energy), find E_1 and E_2 as functions of the photon energy, $\hbar\omega$.

$$E_1 = -\frac{\hbar^2 k^2}{2m_h^*}$$
$$E_2 = E_g + \frac{\hbar^2 k^2}{2m_e^*}$$

Subtract E_2 and E_1 and equate to $\hbar \omega$:

$$\begin{split} E_2 - E_1 &= \hbar \omega \\ &= E_g + \frac{\hbar^2 k^2}{2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right) \\ &= E_g + \frac{\hbar^2 k^2}{2m_r^*} \end{split}$$

Rewriting E_1 and E_2 in terms of m_r^* and using the above equation, we get:

$$E_1 = -\frac{\hbar^2 k^2}{2m_r^*} \frac{m_r^*}{m_h^*}$$
$$= -\frac{m_r^*}{m_h^*} (\hbar\omega - E_g)$$

$$E_2 = E_g + \frac{\hbar^2 k^2}{2m_r^*} \frac{m_r^*}{m_e^*}$$
$$= E_g + (\hbar\omega - E_g) \frac{m_r^*}{m_e^*}$$

(b) Derive $f_C(E_2(\hbar\omega))$ as a function of $\hbar\omega$.

$$f_C(E_2) = \frac{1}{1 + e^{(E_2 - F_C)/kT}} \\ = \frac{1}{1 + e^{\left(E_g + (\hbar\omega - E_g)\frac{m_t^*}{m_e^*} - F_C\right)/kT}},$$

plugging in for E_2 from above.

(c) Derive $f_V(E_1(\hbar\omega))$ as a function of $\hbar\omega$.

$$f_V(E_1) = \frac{1}{1 + e^{(E_1 - F_V)/kT}} \\ = \frac{1}{1 + e^{\left(-\frac{m_*^*}{m_h^*}(\hbar\omega - E_g) - F_V\right)/kT}}$$

(d) Calculate and plot the emission probability f_e(ħω) = f_C(ħω)(1 - f_V(ħω)) for photon energies from 0.8 to 1.5 eV. Plot for two temperatures: T = 0 and T = 300 K. Simply plug in f_C and f_V found above:

$$f_e(\hbar\omega) = \frac{1}{1 + e^{\left(E_g + (\hbar\omega - E_g)\frac{m_r^*}{m_e^*} - F_C\right)/kT}} \left(1 - \frac{1}{1 + e^{\left(-\frac{m_r^*}{m_h^*}(\hbar\omega - E_g) - F_V\right)/kT}}\right)$$

To use this equation we must find F_C and F_V .

Since $F_C - F_V > E_g$, F_C and/or F_V is degenerate. Since $m_e^* < m_h^*$, electrons are degenerate: $F_C > E_g$. Assume holes are also degenerate: $F_V < 0$. Then we have

$$n \propto N_C (F_C - E_g)^{3/2} \propto m_e^{*3/2} (F_C - E_g)^{3/2}$$
$$p \propto N_V (-F_V)^{3/2} \propto m_h^{*3/2} (-F_V)^{3/2}$$

with the same proportionality factor for n and p. Since n = p, we have

$$\begin{aligned} \frac{m_h^*}{m_e^*} &= \frac{F_C - E_g}{-F_V} \\ 4 &= \frac{F_V + 1.2eV - 1eV}{-F_V} \\ -4F_V &= F_V + 0.2eV \\ F_V &= -0.04eV \\ F_C &= F_V + 1.2eV = 1.16eV. \end{aligned}$$

Figure 1: f_e vs $\hbar \omega$ (eV) at T = 0K.

Note that $F_V < 0$, justifying our original assumption. f_e is plotted in Figs. 1 and 2.

(e) Repeat part d) for the Fermi inversion factor $f_g(\hbar\omega) = f_C(\hbar\omega) - f_V(\hbar\omega)$.

$$f_g(\hbar\omega) = \frac{1}{1 + e^{\left(E_g + (\hbar\omega - E_g)\frac{m_r^*}{m_e^*} - F_C\right)/kT}} - \frac{1}{1 + e^{\left(-\frac{m_r^*}{m_h^*}(\hbar\omega - E_g) - F_V\right)/kT}}$$

 f_g is plotted in Figs. 3 and 4.

(f) Plot the gain spectra for T = 0 and T = 300 K for the condition given in d).

$$g(\hbar\omega) = C_0 \left| \hat{\mathbf{e}} \cdot \mathbf{p} \right|^2 \rho_r(\hbar\omega - E_g) f_g(\hbar\omega)$$
$$C_0 = \frac{\pi e^2}{nc\epsilon_0 m_0^2 \omega}$$
$$\left| \hat{\mathbf{e}} \cdot \mathbf{p} \right|^2 = \frac{m_0}{6} E_p, \quad E_p = 25.7 eV$$
$$\rho_r(\hbar\omega - E_g) = H(\hbar\omega - E_g) \frac{1}{2\pi^2} \left(\frac{2m_r^*}{\hbar^2} \right)^{3/2} \sqrt{\hbar\omega - E_g}$$
$$f_g(\hbar\omega) = f_C(\hbar\omega) - f_V(\hbar\omega)$$

Assuming n = 3.5, $g(\hbar \omega)$ is plotted in Figs. 5 and 6.

Figure 2: f_e vs $\hbar \omega$ (eV) at T = 300K.

Figure 3: f_g vs $\hbar \omega$ (eV) at T = 0K.

Figure 4: f_g vs $\hbar \omega$ (eV) at T = 300K.

Figure 5: $g \ (\text{cm}^{-1})$ vs $\hbar \omega \ (\text{eV})$ at T = 0K.

Figure 6: $g \text{ (cm}^{-1})$ vs $\hbar \omega$ (eV) at T = 300K.

(g) Plot the spontaneous emission spectra for T = 0 and T = 300 K for the condition given in d).

$$r_{\rm spon}(\hbar\omega) = \frac{8\pi n^2(\hbar\omega)^2}{h^3 c^2} \frac{f_e(\hbar\omega)}{f_g(\hbar\omega)} g(\hbar\omega)$$

 $r_{\rm spon}$ is plotted in Figs. 7 and 8.

Figure 7: $r_{\rm spon} \ ({\rm eV}^{-1} {\rm um}^{-3} {\rm s}^{-1})$ vs $\hbar \omega \ ({\rm eV})$ at T = 0K.

Figure 8: $r_{\rm spon} \ ({\rm eV}^{-1} {\rm um}^{-3} {\rm s}^{-1})$ vs $\hbar \omega \ ({\rm eV})$ at T = 300 K.