EE 236
Fall 2004
Homework set 2, Due Friday, September 17

1) Show that the Hermitian conjugate of the product of two operators is the product of the Hermitian conjugate of each of the operators, in reverse order.
2) We discussed in class that if an operator is Hermitian, has descrete eigenvalues, and is non singular than its eigenstates form a complete orthogonal set. For this problem, show the opposite, that is that if an operator's eigenstates form a complete orthogonal set, then it is Hermitian. (Note that it does not matter if some of the eigenvalues are the same to show this)
3) If two or more eigenstates of a Hermitian operator have the same eigenvalue, they are not necessarily orthogonal. Show that if an operator has two eigenstates which are not linearly dependent, (linearly dependant: $|x>=A| y>$ for some value of A), but have the same eigenvalue, that a new pair of orthogonal eigenstates can be generated from them.
4) Yariv problem 2.1
5) Yariv problem 2.3
6) Yariv problem 2.6
7) Yariv problem 2.7
