## EE 240B – Spring 2018

#### Advanced Analog Integrated Circuits Lecture 1: Introduction



Elad Alon Dept. of EECS

## **Course Focus**

- Focus is on analog <u>design methodology</u>
- Methodology = how to translate a set of specs in to a circuit (topology + sizing)
  - Note that also need to understand where the specs came from
- Especially in analog, some things are much "easier" to do than others
  - Concrete methodology helps to make tradeoffs more clear
  - Sometimes (often) the right thing to do is change the specs

EE 240B

Lecture 1

## **Course Goal**

- Learn how to create <u>systematic</u> methodologies to analog design
  - Based on fundamental principles
  - For a wide variety of applications
  - And that can be captured within an executable program (generator more later)
- Will develop increasingly more complete design methodology examples
  - And will introduce additional topologies/circuits as we realize the need for them

## **Teaching Staff**

#### • Elad's office hours

- 519 Cory Hall
- Office hours TBA

#### • GSI: Eric Chang

• Office hours TBA

## Administrative

 Course web page: https://inst.eecs.berkeley.edu/~ee240b/sp18/

#### • Lecture videos

• Volunteers for recording?

#### • All announcements made through piazza

• In case you weren't already enrolled:

http://www.piazza.com/berkeley/spring2018/ee240b

### **Lecture Notes**

- Compilation from offerings by multiple faculty/instructors:
  - Prof. Bernhard Boser, Prof. Ali Niknejad, Dr. Simone Gambini, Dr. Lingkai Kong, and myself
- Primary source of material for the class
  - No required text reference texts on next slide
- Notes posted on the web

#### **Reference Texts**

- Analysis and Design of Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, 4th Ed., Wiley, 2001.
- Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000.
- The Design of CMOS Radio-Frequency Integrated Circuits, Thomas H. Lee, 2nd Ed., Cambridge University Press, 2003.
- Analog Integrated Circuit Design, D. Johns and K.Martin, Wiley, 1997.
- The Designers Guide to SPICE & SPECTRE, K. S. Kundert, Kluwer Academic Press, 1995.
- **Operation and Modeling of the MOS Transistor,** Y. Tsividis, McGraw-Hill, 2nd Edition, 1999.

## Grading

- HW: 10%
  - One HW roughly every two weeks
  - You will be "graded" purely by on-time submission
    - You should "self-grade and make sure you understand the solutions – falling behind/not doing this will doom you to failure everywhere else.
- Project: 30%
  - Groups of 2 find a partner ahead of time
- Midterm: 25%
- Final Exam: 35%

## Homework

- Can discuss/work together
  - But write-up must be individual
- Submission via gradescope
  - Further details will be announced later
- Generally due 5pm on Thursdays
- <u>No</u> late submissions
  - Start early!

### **Schedule Notes**

- ISSCC Week: 2/12 2/15 (no lectures)
- Midterm: March 8 (tentative)
- Spring break: 3/26 3/30
- Project (tentative)
  - Part 1 due Apr. 10
  - Part 2 due Apr. 19
  - Part 3 due May 3
- Final: Wed., May 10, 8am 11am

### **Course Material Introduction**

## **Analog and Mixed-Signal Circuits**



## Why Analog Circuits?

- The "real" or "physical" world is analog
  - Analog is required to interface to just about anything
    - Digital signals have analog characteristics too...
- In many applications, design of analog components is in the critical path
  - More later

## **Example: RF Transceiver**



http://www.ti.com/product/CC110L

Lecture 1

## **Another Example**



Image from http://ihsmarkit.com



From P. Upadhyaya, ISSCC 2015

Power is once again the key motivating factor

## **Not Just Communications**



## **Some Important Context**



Image from chiprebel.com



Image from moorinsightsstrategy.com

## What You Will Therefore Be Doing

- You will be tasked with building many different variants of the same function/block
- You will be tasked with building many different blocks
- You will be tasked with putting many different blocks together to realize a (sub-) system
- How do you do this <u>efficiently</u> without (re-)introducing any <u>known</u> errors?

- Today: Integrate pre-designed blocks (IP)
  - But re-use is still limited IP is blackbox, so if ever need to extend/modify, usually end up building your own
- Berkeley view: Capture designer's knowledge (methodology) as an executable generator
  - Good methodologies will be parameterized (i.e., support variants)
  - New features supported by incrementally extending the code

### In Other Words...

- Your goal as an analog designer <u>should not</u> be to deliver a specific *instance*.
- Instead, you <u>should</u> strive to realize the best generator that you can
  - So that the generator can be executed to realize any instance you are tasked with building
  - And so that you can actually effectively re-use your colleagues work (and they can re-use yours)

## **Berkeley Analog Generator (BAG)**

- Hierarchical, Python-based framework allowing executable specification of design procedure
  - I.e., BAG takes care of the "plumbing"
- Will not require you to use BAG in this class



J. Crossley et al., *ICCAD* Nov. 2013

 But forcing yourself to codify your methodology is an outstanding way to check and develop your understanding

EE 240B

## **BAG Example**



EE 240B

## **Course Outline (approx.)**

- Module 1: Analog design core
  - "Modeling" MOS transistors
  - Electronic noise and noise analysis
  - GBW- and noise-limited amplifier design
- Module 2: MOS amplifier implementation
  - OTA topologies and design
  - Time-domain behavior (settling)
  - Interference mitigation
  - Common-mode feedback

# **Course Outline (approx.)**

- Module 3: AFE system (Photonic Link) design
  - Link circuit components and analysis
  - Comparators
  - Layout and matching effects
  - Offset cancellation
- Module 4: Wrap-up
  - Discrete time analog circuits
  - Sampling
  - Biasing and references
  - Design strategies/motifs