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Square Law Model?

• Assumptions made to come up with this model:
• Charge density determined only by vertical field
• Drift velocity set only by lateral field
• Neglects diffusion currents (“magic” Vth)
• Constant mobility
• And about 102 – 103 more parameters in a real SPICE 

model…
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Graphically

180nm NMOS
Square Law
BJT

[ B. Murmann ]
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Better Hand Models?
• There are better (less inaccurate) “hand” models 

out there
• Velocity saturation
• Alpha-power law
• EKV
• …

• But all of them either (1) neglect certain effects or 
(2) are too unwieldy to be useful for hand 
analysis
• This is particularly true if you want to say anything about ro

(which we do typically care about in analog)
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Taking a Step Back
• Reminder: the model you use should be tailored 

to the question you are trying to answer

• “Hand” models are good for building intuition, 
and to a lesser extent, checking reasonableness 
of simulation results

• Simulation models are the ones you will have to 
use to “sign off” on your design
• So our design methodology should be using the results from 

the full simulation models too
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Basic Small Signal Transistor Model 
(for Design)



EE 240B Lecture 2 7

Biasing…
• In quadratic model, Vod = (VGS – VTH) told us a lot 

about important biasing tradeoffs:
• gm = 2*ID/Vod

• ro “large” for VDS > Vod
• “Boundary between saturation and triode”

• ωT = gm/Cgg ∝ Vod

• But real transistors clearly aren’t quadratic
• And even worse, there is no way to actually measure Vod

• Idea: work with a new (measurable) transistor 
FoM inspired by Vod…
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Transistor FoM #1: V* (gm/ID) 
• Define:

e.g. V* = 200mV  gm/ID = 10 V-1

• Inspired by the fact that V* = Vod for square law
• Devices definitely not square law, but can 

measure V*
• It will (by definition) set current efficiency
• And (approximately) give you insight in to other parameters 

(ro, ωT, etc.)
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Simplest Possible Usage of V*
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Simplest Possible Usage of V*
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“Best” Possible V*?
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Tradeoff for Low V*
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Transistor FoM #2: ωT

• Reminder: ωT defined by ||ig(ωT)|| = ||id(ωT)||
• Measureable both in simulation and in hardware
• In our simplified small-signal model, ωT = gm/Cgg

• (Cdd usually some fixed multiple relative to Cgg, so ωT is a 
good FoM to capture this too.)

• Lower V* results in better current efficiency, but 
lower ωT
• Best balance depends on transistor characteristics, 

desired gain-bandwidth
• More on that next lecture
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What About L?
• How does transistor L affect V*?

• How does transistor L affect ωT?
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Transistor FoM #3: av0

• Most of the time you don’t actually care about 
value of ro itself
• Just care about how it impacts circuit-level 

specifications
• Most commonly, gain (AV)

• So, often use intrinsic gain av0 = gm*ro instead
• Still measurable (from I-V curves) in both simulation 

and hardware
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Example Usage of av0
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Intrinsic Gain vs. L
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Intrinsic Gain vs. VDS
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Loose End #1
• Talked about transistors so far as if they all have 

the same FoMs for given W, L, VGS, VDS, …

• If you have 5 billion transistors on a single chip, 
do you think all of those transistors behave 
exactly the same?

• If you ship 100 million chips, do you think all of 
those chips will have the same specifications?
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Process Corners
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Loose End #2

Carusone, Johns, Martin, Analog Integrated 
Circuit Design, 2nd Edition, Wiley, 2011, p. 31.
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Small Signal Capacitances
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“Complete” Small Signal Model

[ B. Murmann ]
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To Make Matters Worse…

Image from Intel/www.legitreviews.com
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“More Complete” Small Signal 
Model
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So What Do We Do?



EE 240B Lecture 2 27

So What Do We Do?
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Final Note on Simplified Small 
Signal Model
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