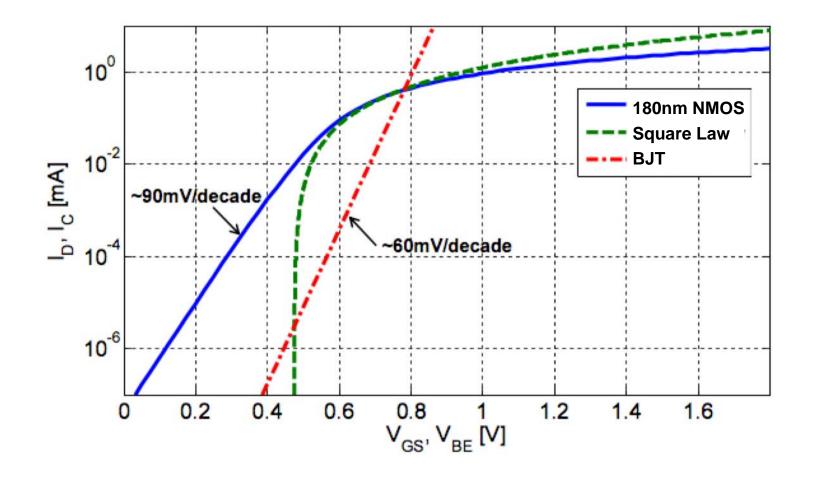
EE 240B – Spring 2018

Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models

Elad Alon Dept. of EECS


Square Law Model?

$$I_{D,sat} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{th}\right)^2$$

• Assumptions made to come up with this model:

- Charge density determined only by vertical field
- Drift velocity set only by lateral field
- Neglects diffusion currents ("magic" Vth)
- Constant mobility
- And about 10² 10³ more parameters in a real SPICE model...

Graphically

[B. Murmann]

Lecture 2

Better Hand Models?

- There are better (less inaccurate) "hand" models out there
 - Velocity saturation
 - Alpha-power law
 - EKV
 - ...
- But all of them either (1) neglect certain effects or (2) are too unwieldy to be useful for hand analysis
 - This is particularly true if you want to say anything about r_o (which we do typically care about in analog)

Taking a Step Back

- Reminder: the model you use should be tailored to the question you are trying to answer
- "Hand" models are good for building intuition, and to a lesser extent, checking reasonableness of simulation results
- <u>Simulation</u> models are the ones you will have to use to "sign off" on your design
 - So our design methodology should be using the results from the full simulation models too

Basic Small Signal Transistor Model (for Design)

Biasing...

- In quadratic model, $V_{od} = (V_{GS} V_{TH})$ told us a lot about important biasing tradeoffs:
 - $g_m = 2*I_D/V_{od}$
 - r_o "large" for $V_{DS} > V_{od}$
 - "Boundary between saturation and triode"

•
$$\omega_{\rm T} = g_{\rm m}/C_{\rm gg} \propto V_{\rm od}$$

- But real transistors clearly aren't quadratic
 - And even worse, there is no way to actually measure V_{od}
- Idea: work with a new (measurable) transistor
 FoM inspired by V_{od}...

EE 240B

Lecture 2

Transistor FoM #1: V* (g_m/I_D)

• Define:

$$V^* = \frac{2I_D}{g_m} \qquad \Leftrightarrow \qquad \frac{g_m}{I_D} = \frac{2}{V^*}$$

e.g. V^{*} = 200mV
$$\rightarrow$$
 g_m/I_D = 10 V⁻¹

- Inspired by the fact that $V^* = V_{od}$ for square law
- Devices definitely not square law, but can measure V*
 - It will (by definition) set current efficiency
 - And (approximately) give you insight in to other parameters (r_o, ω_T , etc.)

Simplest Possible Usage of V*

Simplest Possible Usage of V*

"Best" Possible V*?

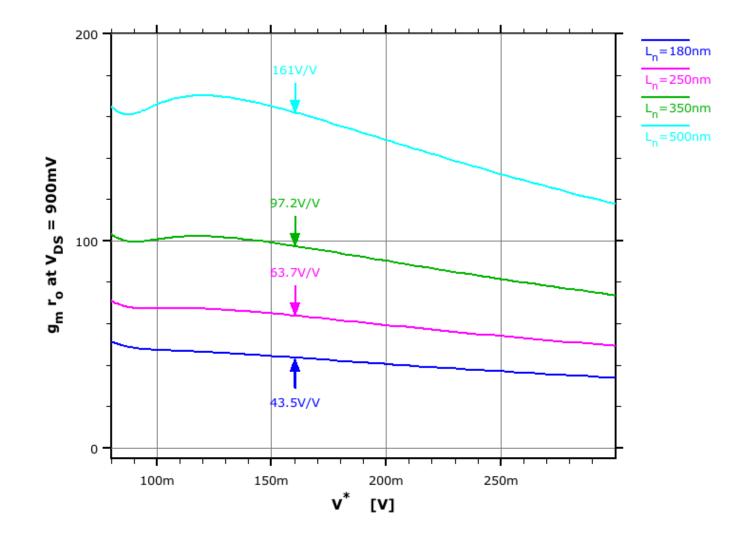
Tradeoff for Low V*

Transistor FoM #2: ω_T

- Reminder: ω_T defined by $||i_g(\omega_T)|| = ||i_d(\omega_T)||$
 - Measureable both in simulation and in hardware
 - In our simplified small-signal model, $\omega_T = g_m/C_{gg}$
 - (C_{dd} usually some fixed multiple relative to C_{gg}, so ω_T is a good FoM to capture this too.)
- Lower V* results in better current efficiency, but lower ω_{T}
 - Best balance depends on transistor characteristics, desired gain-bandwidth
 - More on that next lecture

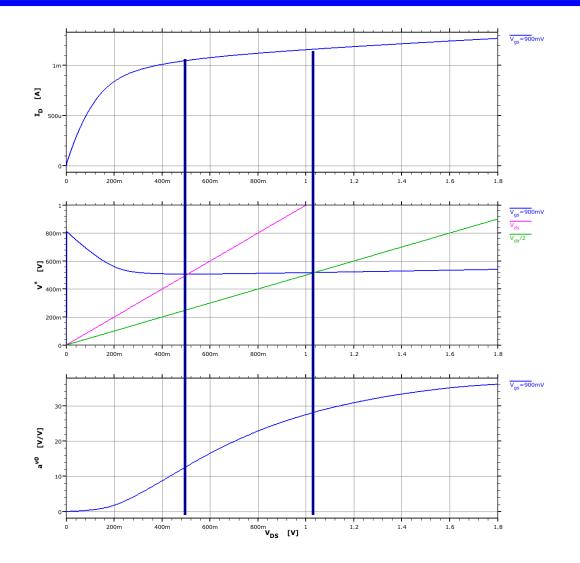
What About L?

• How does transistor L affect V*?


• How does transistor L affect ω_T ?

Transistor FoM #3: a_{v0}

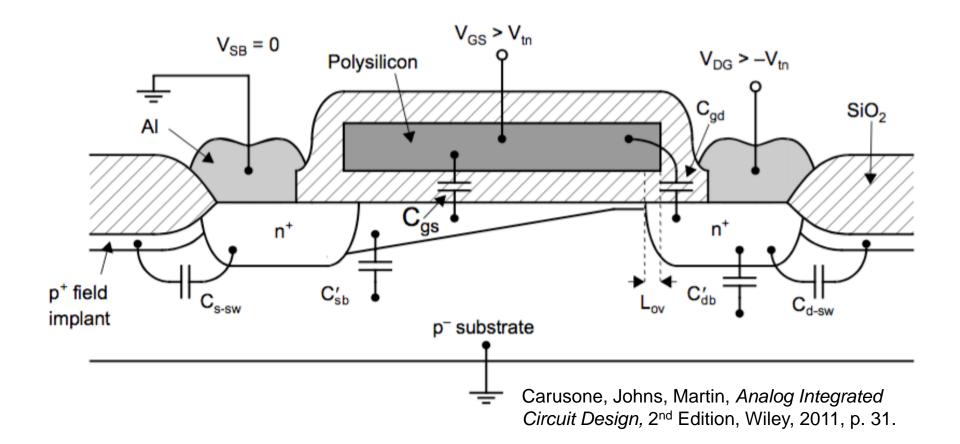
- Most of the time you don't actually care about value of r_o itself
 - Just care about how it impacts circuit-level specifications
 - Most commonly, gain (A_V)
- So, often use intrinsic gain $a_{v0} = g_m^* r_o$ instead
 - Still measurable (from I-V curves) in both simulation and hardware


Example Usage of a_{v0}

Intrinsic Gain vs. L

Lecture 2

Intrinsic Gain vs. V_{DS}

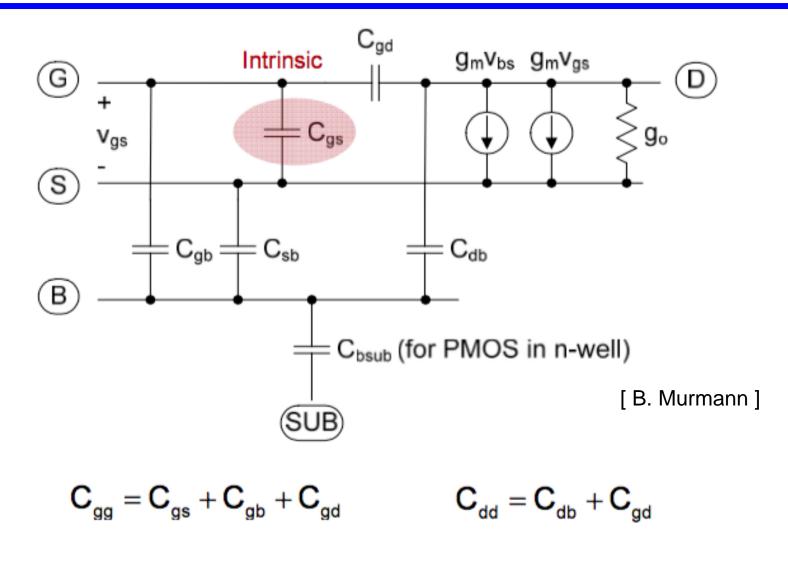

Lecture 2

Loose End #1

- Talked about transistors so far as if they all have the same FoMs for given W, L, V_{GS}, V_{DS}, ...
- If you have 5 billion transistors on a single chip, do you think all of those transistors behave exactly the same?
- If you ship 100 million chips, do you think all of those chips will have the same specifications?

Process Corners

Loose End #2

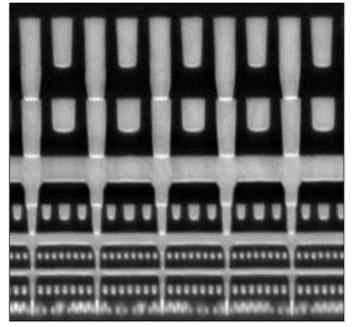


Small Signal Capacitances

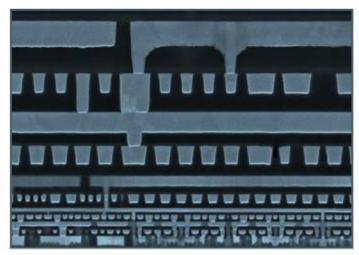
	Subthreshold	Triode	Saturation
C _{GS}	C _{ol}	C _{GC} /2 + C _{ol}	2/3 C _{GC} + C _{ol}
C _{GD}	C _{ol}	$C_{GC}/2 + C_{ol}$	C _{ol}
C _{GB}	C _{GC} C _{CB}	0	0
C _{SB}	C _{jSB}	C _{jsB} + C _{CB} /2	C _{jsB} + 2/3 C _{CB}
C _{DB}	C _{jDB}	C _{jDB} + C _{CB} /2	C _{jDB}

$$C_{GC} = C_{ox}WL$$
$$C_{CB} = \frac{\mathcal{E}_{Si}}{x_d}WL$$

"Complete" Small Signal Model



To Make Matters Worse...


Interconnects

22 nm Process

14 nm Process

80 nm minimum pitch

52 nm (0.65x) minimum pitch

Image from Intel/www.legitreviews.com

"More Complete" Small Signal Model

So What Do We Do?

So What Do We Do?

Final Note on Simplified Small Signal Model