EE 240B – Spring 2018

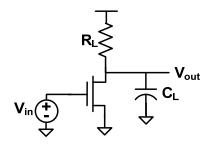
Advanced Analog Integrated Circuits
Lecture 3: Gain-Bandwidth Limited Amplifier
Design Methodology

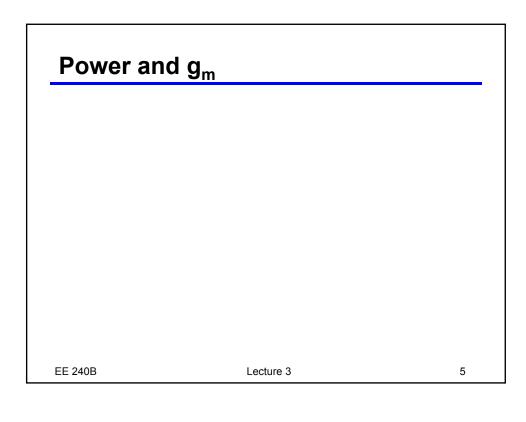


Elad Alon
Dept. of EECS

Preliminaries

- This will be the first in a series of design methodologies we will develop
 - To keep the discussion manageable, will generally assume that only a couple of specifications are critical
 - And that all other specs will "automatically" be met
 - In practice, can inspect specs and technology capabilities to figure out which constraints are really active, and utilize the appropriate methodology
- Will largely ignore biasing details for now
 - · But will patch this later


CS Amplifier Design Methodology

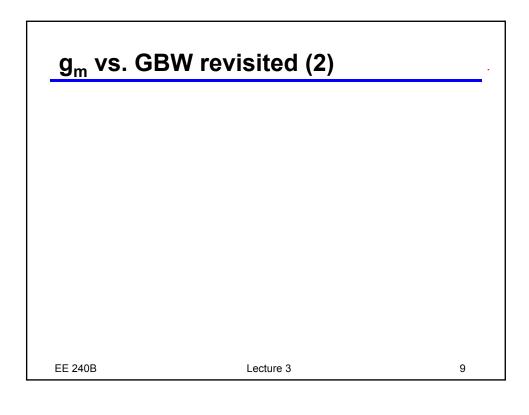


- Input specifications:
 - Minimum small signal gain A_v
 - Minimum 3dB bandwidth ω_{bw}
 - Fixed capacitive load C_L
 - Supply voltage V_{dd}
- · Goal: minimize power
- What are our design variables?

EE 240B Lecture 3 3

Small Signal Model and Analysis

First Pass Methodology EE 240B Lecture 3 6

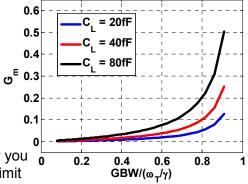

Side Discussion: Digital vs. Analog Power

$$P_{digital} = \alpha_{0\rightarrow 1} C_L V_{DD}^2 f_{clk} \qquad P_{analog} = \frac{1}{2} C_L V_{DD} V^* A_{\nu} \alpha_{bw}$$

 What needs to be true for analog to be lower power than digital?

EE 240B Lecture 3 7

g_m vs. GBW revisited (1)


g_m vs. GBW revisited (3)

Direct Implication

$$I_{D} = \frac{1}{2} \left(\frac{A_{V} \omega_{bw} V^{*} C_{L}}{1 - A_{V} \omega_{bw} / (\omega_{T} / \gamma)} \right)$$

 For a given V*, there is a maximum GBW you can achieve

No matter how much power you spend, cannot exceed this limit (with this topology)

Lecture 3 11

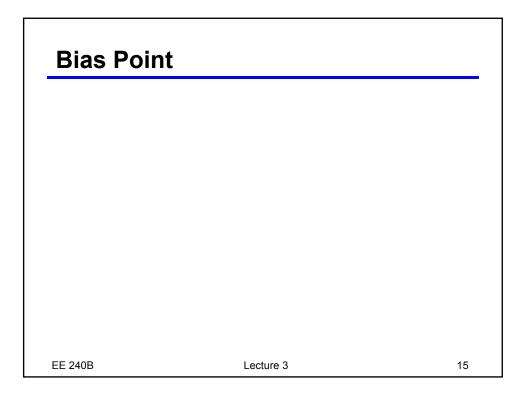
Methodology Take 2

EE 240B

EE 240B

Lecture 3

12


Methodology Take 2`		
EE 240B	Lecture 3	13

What about r_o?

EE 240B

Lecture 3

14

Extension #1: Differential Amplifier

Extension #2: Multi-Stage Amplifier EE 240B Lecture 3 17

Extension #3: "Inverter" Amplifier