EE 240B – Spring 2018

Advanced Analog Integrated Circuits Lecture 14: Photonic Link Overview

Elad Alon Dept. of EECS

Why Photonic Links?

Basic Link Issues

• Signaling: getting bits from the TX to the RX

• Timing: determining which bit is which

RX: O to E

RX: O to E Model

Photonic RX: Attempt #1

Photonic RX: Attempt #2

Noise \rightarrow BER

- RX circuits always have noise
 - If noise is ever larger than the input signal (at sampling point), RX will decode the bit incorrectly

• BER = Bit Error Rate

I.e., average # of incorrectly received bits / total transmitted bits

EE 240B

Min. Signal Amplitude

• Min. signal set by noise σ and residual offset:

$$BER = \frac{1}{2} erfc \left(\frac{V_{in,ampl} - V_{off}}{\sqrt{2}\sigma_{noise}} \right)$$

- BER = 10⁻¹²: $(V_{in,ampl} V_{off}) = 7\sigma_n$
- BER = 10⁻²⁰: ($V_{in,ampl} V_{off}$) = 9.25 σ_n

EE 240B

So What?

- Why not just hit the RX with a larger signal?
 - (Not a stupid question this is often what people do)
- Simple (hand wavy) answers:
 - Generating optical power can be (very) expensive
 - Wall-plug efficiency usually ~1-10%
 - Larger swing doesn't help with ISI...

Intersymbol Interference (ISI)

ISI continued

Receiver Design Revisited

TIA-Based Front-End

TIA-Based Receiver

Front-end Bandwidth

Performance Limits

Overcoming PD Bandwidth Limit: Multi-Level Signaling

<u>2PAM</u>:

1bit/symbol

<u>4PAM</u>:

2 bits/symbol

4PAM RX