Vibratory Gyroscopes

- Generate momentum by vibrating structures
- Again, conservation of momentum leads to mechanisms for measuring rotation rate and orientation
- Example: vibrating mass in a rotating frame

\[C(t_2) > C(t_1) \]

Basic Vibratory Gyroscope Operation

Principle of Operation
- Tuning Fork Gyroscope:

\[\dot{\vec{a}}_s \]

Drive/Sense Response Spectra:

\[f_0(\omega) \]

Vibratory Gyroscope Performance

Principle of Operation
- Tuning Fork Gyroscope:

\[\dot{x} = \frac{p_x}{k} = \frac{m\dot{a}_s}{k} = \frac{\ddot{a}_c}{\omega^2} \]

\[\dot{\vec{a}}_c = 2\dot{\vec{v}} \times \vec{\Omega} \]

- To maximize the output signal \(x \), need:
 \- Large sense-axis mass
 \- Small sense-axis stiffness
 \- (Above together mean low resonance frequency)
 \- Large drive amplitude for large driven velocity (so use comb-drive)
 \- If can match drive freq. to sense freq., then can amplify output by \(Q \) times
MEMS-Based Gyroscopes

Vibrating Ring Gyroscope

- Laser
- Polarizer
- Rb/Xe Cell
- Photodiode

Tuning Fork Gyroscope

- [Ayazi, GA Tech.]

Nuclear Magnetic Resonance Gyro [NIST]

MEMS-Based Tuning Fork Gyroscope

- In-plane drive and sense modes pick up z-axis rotations
- Mode-matching for maximum output sensitivity
- From [Zaman, Ayazi, et al, MEMS'06]

- Drive and sense axes must be stable or at least track one another to avoid output drift
- Need: small or matched drive and sense axis temperature coefficients to suppress drift

Problem: if drive frequency changes relative to sense frequency, output changes ⇒ bias drift

Need: small or matched drive and sense axis temperature coefficients to suppress drift
Mode Matching for Higher Resolution

- For higher resolution, can try to match drive and sense axis resonance frequencies and benefit from Q amplification

Problem: mismatch between drive and sense frequencies ⇒ even larger drift!

Need: small or matched drive and sense axis temperature coefficients to make this work

Sense Electrodes

Drive Electrode

Tuning Electrodes

Quadrature Cancellation Electrodes

Issue: Zero Rate Bias Error

- Imbalances in the system can lead to zero rate bias error

Mass imbalance ⇒ off-axis motion of the proof mass

Output signal in phase with the Coriolis acceleration

Quadrate output signal that can be confused with the Coriolis acceleration

Nuclear Magnetic Res. Gyroscope

- The ultimate in miniaturized spinning gyroscopes?

 - Better if this is a noble gas nucleus (rather than e-), since nuclei are heavier ⇒ less susceptible to B field

 - Soln: Spin polarize Xe\(^{129}\) nuclei by first polarizing e- of Rb\(^{87}\) (a la CSAC), then allowing spin exchange

Challenge: suppressing the effects of B field

MEMS-Based Tuning Fork Gyroscope

Drive Voltage Signal

(-) Sense Output Current

(+1 Sense Output Current

[Zaman, Ayazi, et al, MEMS'06]

EE 245: Introduction to MEMS

Lecture 26m1: Gyros, Noise & MDS

CTN 11/27/12

Copyright © 2012 Regents of the University of California