ADC Converters

Comparator design

- Single-stage open-loop amplifier
- Cascade of open-loop amplifiers
- Problem associated with DC offset
 - Cascaded output series cancellation
 - Input series cancellation
 - Offset cancellation through additional input pair plus offset storage capacitors
- Latched comparators
- Comparator examples

Voltage Comparators

Electrical schematic

Play an important role in majority of ADCs
Function: Compare the instantaneous value of two analog signals & generate a digital output voltage based on the sign of the difference:

\[
\begin{align*}
\text{If } V_{i+} - V_{i-} > 0 & \Rightarrow V_{\text{out}} = \text{“1”} \\
\text{If } V_{i+} - V_{i-} < 0 & \Rightarrow V_{\text{out}} = \text{“0”}
\end{align*}
\]
Voltage Comparator Architectures

Comparator architectures:

• High gain amplifier with differential analog input & single-ended large swing output
 – Output swing has to be compatible with driving digital logic circuits
 – Open-loop amplification → no frequency compensation required
 – Precise gain not required

• Latched comparators; in response to a strobe (clock edge), input stage disabled & digital output stored in a latch till next strobe
 – Two options for implementation:
 • Latch-only comparator
 • Low-gain preamplifier + high-sensitivity latch

• Sampled-data comparators
 – T/H input
 – Offset cancellation

Comparator Built with High-Gain Amplifier

Amplify $V_{in\text{ min}}$ to V_{DD}
$\Rightarrow V_{in\text{ min}}$ determined by ADC resolution

Example: 12-bit ADC with:
- $V_{FS}=1.5V \Rightarrow 1\text{LSB}=0.36mV$
- $V_{DD}=1.8V$

\Rightarrow For 1.8V output & 0.5LSB precision:

$$A_{\text{gain}} = \frac{1.8V}{0.18mV} = 10,000$$
Comparators
1-Single-Stage Amplification

• Amplifier maximum Gain-Bandwidth product \(f_u \) for a given technology, typically a function of maximum device \(f_t \).

\[f_u = \text{unity-gain frequency}, \quad f_u = -3 \text{dB frequency} \quad f_u = \frac{f_u}{A_v} \]

Example: \(f_u = 10 \text{GHz} \) & \(A_v = 10,000 \)

\[f_o = \frac{10 \text{GHz}}{10,000} = 1 \text{MHz} \]

\[\tau_{\text{settling}} = \frac{1}{2\pi f_o} = 0.16 \mu \text{sec} \]

Allow a few \(\tau \) for output to settle

\[f_{\text{Clock}} \rightarrow \frac{1}{5\tau_{\text{settling}}} = 1.26 \text{MHz} \]

\[\tau_{\text{settling}} = \pi \tau_{\text{settling}} = \approx \]

\[f_u = 0.1-10 \text{GHz} \]

Too slow for majority of applications!

→ Try cascade of lower gain stages to broaden frequency of operation

Comparators
2- Cascade of Open Loop Amplifiers

The stages identical \(\rightarrow \) small-signal model for the cascades:

One stage:

\[|A_v(0)| = g_m R_L \]

\[\omega_b = -3 \text{dB frequency} = \frac{1}{R_L C_T} \]

\[\omega_u = -\text{unity gain frequency} = G \times \text{BW} = \frac{g_m}{C_T} \]

\[\therefore \omega_u = \frac{\omega_u}{|A_v(0)|} \]
Open Loop Cascade of Amplifiers

For an N-stage cascade:

\[A_T(\omega) = (A_T(\omega))_N = \frac{(A_T(\omega))_N}{1 + \frac{1}{\omega_0}} \]

Define

\[\omega_{\text{in}} = -3\text{dB frequency of the N-stage cascade} \]

Then

\[|A_T(\omega_{\text{in}})| = \frac{|A_T(\omega)|_N}{2} \]

and

\[\omega_{\text{in}} = \sqrt{\frac{2}{N-1}} \cdot \frac{\omega_0}{|A_T(\omega)|_N} \]

Thus,

\[\frac{\omega_{\text{in}}}{\omega_0} = \left(\frac{\omega_0}{|A_T(\omega)|_N} \right)^{1/N} \cdot \frac{1}{\sqrt{2^{1/N} - 1}} \]

Example: N=4, A_T=10000 \(\Rightarrow \omega_{\text{in}} = 430 \omega_0 \)

Open Loop Cascade of Amplifiers

Example:

| N | \omega_{\text{in}}/\omega_0 | |A_T(\omega)| |
|---|-----------------|----------------|
| 1 | 10,000 | 10,000 |
| 2 | 64 | 100 |
| 3 | 236 | 21.5 |
| 4 | 435 | 10 |
| 5 | 611 | 6.3 |
| 10| 1067 | 2.5 |
| 20| 1185 | 1.6 |

For \(|A_T(\omega)|=10,000\)

Example:

\[N=3, \quad f_u = 10\text{GHz} \quad \& \quad |A_T(0)| = 10000 \]

\[f_0N = \frac{10\text{GHz}}{(10,000)^{1/3}} = 237\text{MHz} \]

\[\tau_{\text{setting}} = \frac{1}{2\pi f_0} = 0.7\text{ns} \]

Allow a few \(\tau\) for output to settle

\[f_{\text{Max, Clock}} \rightarrow \frac{1}{5\tau_{\text{setting}}} = 290\text{MHz} \]

\(f_{\text{Max}}\) improved from 1.26MHz to 290MHz \(\Rightarrow X236\)
Open Loop Cascade of Amplifiers
Offset Voltage

- From offset point of view: high gain/stage is preferred

- Choice of # of stage → bandwidth vs offset tradeoff

\[A_T = A_1 \cdot A_2 \cdot A_3 \]

Input-referred offset → \[V_{os} = V_{os1} + \frac{V_{os2}}{A_1} + \frac{V_{os3}}{A_1 \cdot A_2} \]

Open Loop Cascade of Amplifiers
Step Response

- Assuming linear behavior (not slew limited)

\[v_{o1} = \frac{1}{C} \int_0^t g_m v_{in} dt = \frac{g_m}{C} v_{in} t \]

\[v_{o2} = \frac{1}{C} \int_0^t g_m v_{o1} dt = \frac{g_m}{C} \int_0^t g_m v_{in} dt = \frac{1}{2} \left(\frac{g_m}{C} \right)^2 v_{in} t^2 \]

\[v_{o3} = \frac{1}{C} \int_0^t g_m v_{o2} dt = \frac{g_m}{C} \int_0^t \left(\frac{1}{2} \left(\frac{g_m}{C} \right)^2 v_{in} t^2 \right) dt \]

\[= \frac{1}{3} \left(\frac{1}{2} \left(\frac{g_m}{C} \right)^3 \right) v_{in} t^3 \]
Open Loop Cascade of Amplifiers

Step Response

- Assuming linear behavior

\[\text{Delay} = \frac{C}{g_m} \left(N! \left(\frac{V_{out}}{V_{in}} \right)^{1/N} \right) \]

For the output to reach a specified \(V_{out} \) (i.e., \(V_{oh} = V_{out} \)) the delay is

\[\tau_D = \frac{C}{g_m} \left(N! \left(\frac{V_{out}}{V_{in}} \right)^{1/N} \right) \]

Delay/(C/gm)

<table>
<thead>
<tr>
<th>N</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>10K</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>14.1</td>
<td>44.7</td>
<td>141</td>
</tr>
<tr>
<td>3</td>
<td>3.8</td>
<td>8.4</td>
<td>18.2</td>
<td>39.1</td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
<td>7.9</td>
<td>12.4</td>
<td>22.1</td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
<td>6.5</td>
<td>10.4</td>
<td>16.4</td>
</tr>
<tr>
<td>6</td>
<td>4.4</td>
<td>6.4</td>
<td>9.5</td>
<td>13.9</td>
</tr>
<tr>
<td>7</td>
<td>4.7</td>
<td>6.5</td>
<td>9.1</td>
<td>12.6</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>6.7</td>
<td>8.9</td>
<td>11.9</td>
</tr>
<tr>
<td>9</td>
<td>5.4</td>
<td>6.9</td>
<td>8.9</td>
<td>11.5</td>
</tr>
<tr>
<td>10</td>
<td>5.7</td>
<td>7.2</td>
<td>9.0</td>
<td>11.4</td>
</tr>
<tr>
<td>11</td>
<td>6.1</td>
<td>7.5</td>
<td>9.2</td>
<td>11.3</td>
</tr>
<tr>
<td>12</td>
<td>6.4</td>
<td>7.8</td>
<td>9.4</td>
<td>11.4</td>
</tr>
<tr>
<td>20</td>
<td>9.3</td>
<td>10.5</td>
<td>11.7</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Out/Min

- Minimum total delay broad function of \(N \)
- Relationship between # of stages resulting in minimize delay \((N_{op}) \) and gain \((V_{out}/V_{in}) \) approximately:

\[N_{opt} = 1 + \log_2 A_T \quad \text{for} \quad A < 1000 \]

\[N_{opt} = 1.2 \ln A_T \quad \text{for} \quad A \geq 1000 \]

Offset Cancellation

• In sampled-data cascade of amplifiers Vos can be cancelled
 → Store on ac-coupling caps in series with amp stages

• Offset associated with a specific amp can be cancelled by
 storing it in series with either the input or the output of that
 stage

• Offset can be cancelled by adding a pair of auxiliary inputs
 to the amplifier and storing the offset on capacitors
 connected to the aux. inputs during offset cancellation
 phase

Offset Cancellation
Output Series Cancellation

• Amp modeled as ideal
 + Vos (input referred)

1- Store offset:
 • S1, S4 → open
 • S2, S3 → closed
 → VC = AxVos

Offset Cancellation
Output Series Cancellation

2- Amplify:
- S2, S3 → open
- S1, S4 → closed
 → V_C = A \times V_{OS}

Circuit requirements:
- Amp not saturate during offset storage
- High-impedance (C) load → C_c not discharged
- C_c >> C_{switch} to avoid attenuation
- C_c >> C_L to avoid excessive offset due to charge injection

Offset Cancellation
Cascaded Output Series Cancellation

Note: Offset storage capacitors in series with the amplifier outputs
Offset Cancellation
Cascaded Output Series Cancellation

1- S1 open, S2,3,4,5 closed

\[V_{C1} = A_1 x V_{os1} \]
\[V_{C2} = A_2 x V_{os2} \]
\[V_{C3} = A_1 x V_{os3} \]

2- S3 open first
- Feedthrough from S3 offset on X
- Switch offset, \(\epsilon_3 \) induced on node X
- Since S4 remains closed, offset associated with \(\epsilon_3 \) stored on C2

\[V_x = \epsilon_3 \]
\[V_{C1} = A_1 x V_{os1} - \epsilon_3 \]
\[V_{C2} = A_2 x (V_{os2} + \epsilon_3) \]
3- $S_4 \rightarrow$ open
- Feedthrough from S_4 → offset on Y
- Switch offset, ε_4 induces error on node Y
- Since S_5 remains closed, offset associated with ε_4 → stored on C_3

$$V_Y = \varepsilon_4$$
$$V_{C2} = A_2x(V_{os2} + \varepsilon_3) - \varepsilon_4$$
$$V_{C3} = A_3x(V_{os3} + \varepsilon_4)$$

4- $S_2 \rightarrow$ open, $S_5 \rightarrow$ open, $S_1 \rightarrow$ closed
- S_2 open & S_1 closed → since input connected to low impedance source charge injection not of major concern
- Switch offset, ε_5 introduced due to S_5 opening

$$V_X = A_1x(V_{in}+V_{os1}) - V_{C1}$$
$$= A_1x(V_{in}+V_{os1}) - (A_1\cdot V_{os1} - \varepsilon_3)$$
$$= A_1\cdot V_{in} + \varepsilon_3$$
Offset Cancellation
Cascaded Output Series Cancellation

\[V_y = A_2(x_{V} + V_{os2}) - V_{c2} \]
\[= A_2(x(A_1V_{in} + \varepsilon_3 + V_{os2})) - [A_2(V_{os2} + \varepsilon_3) - \varepsilon_4] \]
\[= A_1A_2.V_{in} + \varepsilon_4 \]

\[V_{out} = A_3(x_{V} + V_{os3}) - V_{c3} \]
\[= A_3(A_2xA_1V_{in} + \varepsilon_4 + V_{os3}) - [A_3(V_{os3} + \varepsilon_4) - \varepsilon_5] \]
\[= A_1A_2A_3.V_{in} + \varepsilon_5 \]

Example:
3-stage open-loop differential amplifier with series offset cancellation + output amplifier (see Ref.)

\[A_{Total}(DC) = 2 \times 10^6 = 126\text{dB} \]
\[\text{Input-referred offset} < 5\mu V \]

Offset Cancellation
Output Series Cancellation

• Advantages:
 – Almost complete cancellation
 – Closed-loop stability not required

• Disadvantages:
 – Gain per stage must be small
 – Offset storage C in the signal path → could slow down overall performance

Offset Cancellation
Input Series Cancellation

1- Store offset

\[S1 = 0 \text{ (off)} \]
\[S2, S3 = 1 \text{ (conducting)} \]

\[V_C = -A(V_C - V_{os}) = \left(\frac{A}{A + 1} \right) V_{os} \]

Note: Mandates closed-loop stability

Offset Cancellation
Input Series Cancellation

2- Amplify

\[S2, S3 \rightarrow \text{open} \]
\[S1 \rightarrow \text{closed} \]

\[V_{out} = -A(V_{in} + V_C - V_{os}) = -A[V_{in} + V_{os}(\frac{A}{A + 1} - 1)] \]

\[V_{out} = -A(V_{in} - \frac{V_{os}}{A + 1}) \]

Example: A=4
\[\rightarrow \text{Input-referred offset} = V_{os}/5 \]

Input-Refereed Offset = \[\frac{V_{os}}{A + 1} \]
Offset Cancellation
Cascaded Input Series Cancellation

\[V_{\text{out}} = A_1 A_2 \left[V_{\text{in}} + \frac{V_{\text{off2}}}{A_1 (A_2 + 1) A_3} \right] \]

Input-Reflected Offset = \[\frac{V_{\text{off2}}}{A_1 (A_2 + 1) A_3} \]

\[\varepsilon_2 \rightarrow \text{charge injection associated with opening of S4} \]

• Advantages:
 – In applications such as C-array successive approximation ADCs can use C-array to store offset

• Disadvantages:
 – Cancellation not complete
 – Requires closed loop stability
 – Offset storage C in the signal path- could slow down overall performance
CMOS Comparators
Cascade of Gain Stages

Fully differential gain stages → 1st order cancellation of switch feedthrough offset

1- Output series offset cancellation

2- Input series offset cancellation

3- Combined input & output series offset cancellation

V_{0x1} & V_{0x2} are both stored on a single pair of coupling capacitors
Offset Cancellation

- Cancel offset by additional pair of inputs + offset storage Cs + an extra clock phase for offset storage (Lecture 18 slide 46-48)

Latched Comparators

Compares two input voltages at time t_x & generates a digital output:

- If $V_{i+} - V_{i-} > 0 \Rightarrow V_{out} = "1"$
- If $V_{i+} - V_{i-} < 0 \Rightarrow V_{out} = "0"$
CMOS Latched Comparators

Comparator amplification need not be linear
→ can use a latch → regeneration

Latch → Amplification + positive feedback

Simplest Form of CMOS Latch
CMOS Latched Comparators
Small Signal Model

Latch can be modeled as a:
→ Single-pole amp + positive feedback

Small signal ac half circuit

Latched Comparator Latch Delay

\[g_a V = \frac{V}{R_L} + C \frac{dV}{dt} \]
\[g_a \left(1 - \frac{1}{g_m R_L} \right) V = \frac{dV}{dt} \]
\[g_a \left(1 - \frac{1}{g_m R_L} \right) dt = \frac{dV}{V} \]

Integrating both sides:
\[\frac{g_a}{C} \left(1 - \frac{1}{g_m R_L} \right) \int_{t_i}^{t} dt = \int_{V_i}^{V} \frac{1}{V} dV \]
\[\left(\int_{x_i}^{x} \frac{1}{x} dx = \ln x \right) \Rightarrow \ln a - \ln b = \ln \frac{a}{b} \]

Latch Delay:
\[t_b = t_i - t_i = \frac{C}{g_a} \left(\frac{1}{g_m R_L} \right) \ln \left(\frac{V_o}{V_i} \right) \]

For \(g_m R_L \gg 1 \)

\[t_b = \frac{C}{g_a} \ln \left(\frac{V_o}{V_i} \right) \]
CMOS Latched Comparators

\[
\tau_D = \frac{C}{g_m} \ln \left(\frac{V_T}{V_i} \right)
\]

\[
\frac{V_T}{V_i} \rightarrow \text{Latch Gain} = A_L
\]

\[
\Rightarrow \tau_D = \frac{C}{g_m} \ln A_L
\]

\[\tau_D(\text{3-stage amp}) = 18.2 \frac{C}{g_m}\]

Normalized Latch Delay

<table>
<thead>
<tr>
<th>AL</th>
<th>(\frac{\tau_D}{C/g_m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>100</td>
<td>4.6</td>
</tr>
<tr>
<td>1000</td>
<td>6.9</td>
</tr>
<tr>
<td>10K</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Compared to a 3-stage open-loop cascade of amps for equal overall gain of 1000
\(\Rightarrow\) Latch faster by about \(x3\)

Latch-Only Comparator

- Much faster compared to cascade of open-loop amplifiers
- Main problem associated with latch-only comparator topology:
 - High input-referred offset voltage (as high as 100mV!)
- Solution:
 - Use preamplifier to amplify the signal and reduce overall input-referred offset
Pre-Amplifier + Latch
Overall Input-Referred Offset

Latch offset attenuated by preamp gain when referred to preamp input.
Assuming the two offset sources are uncorrelated:

\[\sigma_{\text{Input-Referred Offsets}} = \sqrt{\sigma_{\text{Vos Preamp}}^2 + \frac{1}{A_{\text{Preamp}}} \sigma_{\text{Vos Latch}}^2} \]

Example:
\[\sigma_{\text{Vos Preamp}} = 4mV \] & \[\sigma_{\text{Vos Latch}} = 50mV \] & \[A_{\text{Preamp}} = 10 \]

\[\sigma_{\text{Input-Referred Offsets}} = \sqrt{4^2 + \frac{1}{10} 50^2} = 6.4mV \]

Pre-Amplifier Tradeoffs

- Example:
 - Latch offset: 50 to 100mV
 - Preamp DC gain: 10X
 - Preamp input-referred latch offset: 50 to 100mV
 - Input-referred preamplifier offset: 2 to 10mV
 - Overall input-referred offset: 5.5 to 14mV

⇒ Addition of preamp reduces the latch input-referred offset reduced by ~7 to 9X ⇒ allows extra 3-bit resolution for ADC!
Comparator Preamplifier Gain-Speed Tradeoffs

- Amplifier maximum Gain-Bandwidth product (f_u) for a given technology, typically a function of maximum device f_t

\[f_u = \text{unity gain frequency}, \quad f_0 = -3 \text{dB frequency} \quad \text{&} \quad \tau_0 = \text{settling time} \]

\[f_0 = \frac{f_u}{A_{\text{preamp}}} \]

For example assuming preamp has a gain of 10:

\[f_0 = \frac{1 \text{GHz}}{10} = 100 \text{MHz} \]

\[\tau_0 = \frac{1}{2\pi f_0} = \frac{A_{\text{preamp}}}{2\pi f_u} = 1.6\pi \text{sec} \]

- Tradeoff:
 - To reduce the effect of latch offset \rightarrow high preamp gain desirable
 - Fast comparator \rightarrow low preamp gain
 - Choice of preamp gain: compromise speed v.s. input-referred latch offset

Latched Comparator

Important features:
- Maximum clock rate f_s settling time, slew rate, small signal bandwidth
- Resolution \rightarrow gain, offset
- Overdrive recovery
- Input capacitance (and linearity of input capacitance)
- Power dissipation
- Input common-mode range and CMR
- Kickback noise
- ...
Comparator Overdrive Recovery

Linear model for a single-pole amplifier:

During reset amplifier settles exponentially to its zero input condition with $t_0 = RC$

Assume V_m → maximum input normalized to $1/2\text{LSB}$ (=1)

Example: Worst case input/output waveforms

Previous input \rightarrow max. possible e.g. VFS
Current input \rightarrow min. input-referred signal (0.5LSB)

Comparators Overdrive Recovery

- If recovery time is not long enough to allow output to discharge (recover) from previous state- then it may not be able to resolve the current input \rightarrow error
- To minimize this effect:
 1. Passive clamp
 2. Active restore
 3. Low gain/stage
Comparators Overdrive Recovery
Limiting Output Voltage

Clamp
Adds parasitic capacitance

Active Restore
After outputs are latched by following stage
→ Activate ϕ_R & equalize output nodes

CMOS Preamplifier + Latched Comparator
Delay in Response

Latch delay previously found:

$$\tau_D = \frac{C}{g_m} \ln \left(\frac{V_2}{V_1} \right)$$

Assuming gain of A_i for the preamplifier then : $V_i = A_i \times V_{in}$

$$\tau_D = \frac{C}{g_m} \ln \left(\frac{V_0}{A_i V_{in}} \right)$$
Latched Comparator Including Preamplifier Example

Preamplifier gain:

\[A_p = \frac{g_{m1}}{g_{m2}} = \left(\frac{V_{G5}^{M3} - V_{G5}^{M1}}{V_{G5}^{M2} - V_{G5}^{M1}} \right) \]

Comparator delay:

(for simplicity, preamp delay ignored)

\[\tau_0 = C \ln \left(\frac{V_0}{A F_{in}} \right) \]

Comparator Dynamic Behavior

\(V_{OUT} \)

\(CLK \)

Comparator Reset

Comparator Decision

\(T_{CLK} \)

\(\tau_{delay} \)
Comparator Resolution

\[\Delta t = \left(\frac{g_m}{C}\right) \ln\left(\frac{V_{in1}}{V_{in2}}\right) \]

Comparator Voltage Transfer Function

Non-Idealities

- Comparator offset voltage
- Meta-Stable region (output ambiguous)

\[V_{offset} \rightarrow \text{Comparator offset voltage} \]
\[\epsilon \rightarrow \text{Meta-Stable region (output ambiguous)} \]
CMOS Comparator Example

- Flash ADC: 8 bits, ±1/2 LSB INL @ fs=15 MHz (Vref=3.8 V, LSB=15 mV)
- No offset cancellation

Comparator with Auto-Zero

Note:
Reference & input both differential

Flash ADC Comparator with Auto-Zero

\[V_{C_1} - V_{C_2} = (V_{ref_1} - V_{ref_2}) - V_{offset} \]

Substituting for \(V_{C_1} - V_{C_2} \) from previous cycle:

\[V = A_{h1} \cdot A_{h2} [(V_{in_1} - V_{in_2}) - (V_{ref_1} - V_{ref_2}) - V_{offset}] \]

Note: Offset is cancelled & difference between input & reference established

Flash ADC
Using Comparator with Auto-Zero

Auto-Zero Implementation

Comparator Example

- Variation on Yukawa latch used w/o preamp
- Good for low resolution ADCs (in this case 1.5bit/stage for a pipeline)
- Note: M1, M2, M11, M12 operate in triode mode
- M11 & M12 added to vary comparator threshold
- Conductance at node X is sum of G_{M1} & G_{M11}

Comparator Example (continued)

- M1, M2, M11, M12 operate in triode mode with all having equal L
- Conductance of input devices:

\[
\begin{align*}
G_1 & = \frac{\mu_{Cox}}{L} \left[W_2 (V_{T1} - V_{Th}) + W_1 (V_R - V_{Th}) \right] \\
G_2 & = \frac{\mu_{Cox}}{L} \left[W_2 (V_{T2} - V_{Th}) + W_2 (V_R - V_{Th}) \right] \\
\Delta G & = \frac{\mu_{Cox} W_2}{L} \left(V_{Th} - V_{R} - V_{R} \right)
\end{align*}
\]

- To 1st order, for $W_1 = W_2$ & $W_11 = W_12$

\[
V_{Th} = \frac{W_11}{W_1} \times V_x
\]

where $V_x = V_{Th} - V_{Th}$.

\[V_x \text{ fixed, } W11, W12 \text{ varied from comparator to comparator} \iff \text{Eliminates need for resistive divider} \]

Comparator Example

- Used in a pipelined ADC with digital correction
- Differential reference & input
- M7, M8 operate in triode region
- Preamp gain ~10
- Input buffers suppress kick-back
 - ϕ_1 high \rightarrow C_n charged to VR & ϕ_2 is also high \rightarrow current diverted to latch \rightarrow comparator output in hold mode
 - ϕ_2 high \rightarrow C_n connected to S/Hout & comparator input (VR-S/Hout), current sent to preamp \rightarrow comparator in amplify mode

Bipolar Comparator Example

- Used in 8bit 400Ms/s & 6bit 2Gb/s flash ADC
- Signal amplification during ϕ_1 high, latch operates when ϕ_1 low
- Input buffers suppress kick-back & input current
- Separate ground and supply buses for front-end preamp \rightarrow kick-back noise reduction