EE247
Lecture 10

• Switched-capacitor filters
 – Effect of non-idealities (continued)
 – Switched-capacitor filters utilizing double sampling technique

• Data converters
 – Areas of application
 – Data converter transfer characteristics
 – Sampling, aliasing, reconstruction
 – Amplitude quantization

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain
• Opamp finite bandwidth
• Sources of distortion
 – Finite slew rate of the opamp
 – Non-linearity associated with opamp output/input characteristics
 – Capacitor non-linearity- usually insignificant, similar to cont. time filters
 – Charge injection & clock feedthrough (will be covered in the oversampling data converter section)
Effect of Opamp Non-Idealities

Finite DC Gain

\[H(s) = - f_s \frac{C_s}{C_I} \frac{1}{s + f_s \frac{C_s}{C_I} \frac{L}{a}} \]

\[H(s) = \frac{-a b}{s + a b \times \frac{1}{a}} \]

\[\Rightarrow Q_{ntg} = a \]

- Finite DC gain same effect in S.C. filters as for C.T. filters
- If DC gain not high enough → lowing of overall Q & droop in passband

Effect of Opamp Non-Idealities

Finite Opamp Bandwidth

\[H_{\text{actual}}(Z) = H_{\text{ideal}}(Z) \left[1 - e^{-k} + e^{-k} \frac{C_1}{C_1 + C_s} z^{-1} \right] \]

where \(k = \pi \times \frac{C_1}{C_1 + C_s} \frac{f_t}{f_s} \)

\(f_t \rightarrow \text{Opamp unity-gain-frequency} \), \(f_s \rightarrow \text{Clock frequency} \)

Opamp Bandwidth Requirements for Switched-Capacitor Filters Compared to Continuous-Time Filters

- Finite opamp bandwidth causes phase lag at the unity-gain frequency of the integrator for both type filters
 - \(\rightarrow \) Results in negative intg. Q & thus increases overall Q and gain @ results in peaking in the passband of interest

- For given filter requirements, opamp bandwidth requirements much less stringent for S.C. filters compared to cont. time filters
 - \(\rightarrow \) Lower power dissipation for S.C. filters (at low freq.s only due to other effects)

- Finite opamp bandwidth causes down shifting of critical frequencies in both type filters
 - Since cont. time filters are usually tuned \(\rightarrow \) tuning accounts for frequency deviation
 - S.C. filters are untuned and thus frequency shift could cause problems specially for narrow-band filters
Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain
• Opamp finite bandwidth
• Sources of distortion
 – Finite slew rate of the opamp
 – Non-linearity associated with opamp output/input characteristics
 – Capacitor non-linearity—usually insignificant, similar to cont. time filters
 – Charge injection & clock feedthrough (will be covered in the oversampling data converter section)

What is Slewing?

Assumption:
Integrator opamp is a simple class A transconductance type differential pair with fixed tail current, \(I_{ss}=\text{const} \).
What is Slewing?

$|V_{Cs}| > V_{max}$ → Output current constant $I_o = \text{Iss}/2$ or $-\text{Iss}/2$
→ Constant current charging/discharging C_I: V_o ramps down/up → Slewing

After V_{Cs} is discharged enough to have:

$|V_{Cs}| < V_{max}$ → $I_o = g_m V_{Cs}$ → Output → Exponential or over-shoot settling

Distortion Induced by Opamp Finite Slew Rate

Vo

Output Voltage

Slewing

Settling

Settling (multi-pole)

Time

Multiple pole settling

One pole settling
Ideal Switched-Capacitor Output Waveform

\[\Phi_1, \Phi_2 \]
\[\text{Vin, Vo, Vcs, Clock} \]
\[\text{Charge transferred from Cs to C1} \]

Slew Limited Switched-Capacitor Integrator

Output Slewing & Settling

\[\Phi_1, \Phi_2 \]
\[\text{Vo-ideal, Vo-real} \]
\[\text{Slewing, Linear Settling} \]
Distortion Induced by Finite Slew Rate of the Opamp

- Error due to exponential settling changes linearly with signal amplitude.
- Error due to slew-limited settling changes non-linearly with signal amplitude (doubling signal amplitude X4 error).

For high-linearity need to have either high slew rate or non-slewing opamp.

\[HD_k = \frac{V_o}{S_f T_s} \frac{8(\sin \frac{a_0 T_s}{2})^2}{\pi k (k^2 - 4)} \]

\[HD_3 = HD_k f_0 >> f_s \approx \frac{8a V_o f_s^2}{75 S f_s} \]

Distortion Induced by Opamp Finite Slew Rate

Example:
Slew Related Harmonic Distortion

\[HD_3 = \frac{V_o}{S_r T_s} \left(\frac{sin \left(\frac{\omega T_s}{2} \right)}{15 \pi} \right)^8 \]

\[HD_3 = \frac{8\pi V_o}{15 S_r} \left(\frac{f_s}{f} \right)^2 \]

Switched-capacitor filter with 4kHz bandwidth, \(f_s = 128kHz \), \(S_r = 1V/\mu sec \), \(V_o = 3V \)

Distortion Induced by Opamp Finite Slew Rate

Example
Distortion Induced by Finite Slew Rate of the Opamp

• Note that for a high order switched capacitor filter → only the last stage slewing will affect the output linearity (as long as the previous stages settle to the required accuracy)
 → Can reduce slew limited non-linearities by using an amplifier with a higher slew rate only for the last stage
 → Can reduce slew limited non-linearities by using class A/B amplifiers
 • Even though the output/input characteristics is non-linear as long as the DC open-loop gain is high, the significantly higher slew rate compared to class A amplifiers helps improve slew rate induced distortion in S.C. filters

• In cases where the output is sampled by another sampled data circuit (e.g. an ADC or a S/H) → no issue with the slewing of the output as long as the output settles to the required accuracy & is sampled at the right time

More Realistic Switched-Capacitor Circuit Slew Scenario

At the instant C_i connects to input of opamp ($t=0^+$)
→ Opamp not yet active at $t=0^+$ due to finite opamp bandwidth → delay
→ Feedforward path from input to output generates a voltage spike at the output with polarity opposite to final V_o step- spike magnitude function of C_p, C_L, C_s
→ Spike increases slewing period
→ Eventually, opamp becomes active - starts slewing followed by subsequent settling
Switched-Capacitor Circuit

Opamp not Active @ \(t=0^+ \)

\[\text{Charge sharing: } C_I V_{CI}^{0^+} = V_{CI}^{0^+} (C_i + C_{eq}) \]
\[\text{where } C_{eq} = \frac{C_I C_L}{C_I + C_L} \]

\[\Delta V_{out}^{0^+} = V_{CI}^{0^+} \frac{C_I}{C_i + C_L} \approx V_{CI}^{0^-} \frac{C_i}{C_i + C_{eq}} \times \frac{C_I}{C_I + C_L} \]

Assuming \(C_L << C_i << C_I \) → \(C_{eq} = C_L \) → \(C_I V_{CI}^{0^+} = V_{CI}^{0^+} (C_i + C_L) \) → \(V_{CI}^{0^+} = V_{CI}^{0^+} \)
→ \(\Delta V_{out}^{0^+} = V_{CI}^{0^+} \frac{C_I}{C_i + C_L} \times \frac{C_i}{C_i + C_L} = V_{CI}^{0^+} \)

Note that \(\Delta V_{final}^{0^+} = \frac{C_I V_{CI}^{0^+}}{C_I} = \frac{C_i V_{CI}^{0^+}}{C_i} \)

More Realistic Switched-Capacitor Circuit Slew Scenario

Notice that if \(C_i \) is large → some of the charge stored on \(C_s \) is lost prior to opamp becoming effective → operation loses accuracy

\[\text{Charge sharing: } C_s V_{Cs}^{0^+} = V_{Cs}^{0^+} (C_s + C_{eq}) \]
\[\text{where } C_{eq} = \frac{C_I C_L}{C_I + C_L} \]

\[V_{Cs}^{0^+} = V_{Cs}^{0^-} \frac{C_s}{C_s + C_{eq}} = V_{Cs}^{0^-} \frac{C_s C_I C_L}{C_s + C_{eq} C_I + C_L} \]

→ Partly responsible for S.C. filters only good for low-frequency applications
More Realistic S.C. Slew Scenario

Vo_ideal

Vo_real

Slewing Linear Settling Slewing Linear Settling

Vo_real Including t=0+ spike

Slewing Linear Settling

Spike generated at t=0+

Sources of Noise in Switched-Capacitor Filters

• Opamp Noise
 – Thermal noise
 – 1/f (flicker) noise

• Thermal noise associated with the switching process (kT/C)
 – Same as continuous-time filters

• Precaution regarding aliasing of noise required
Extending the Maximum Achievable Critical Frequency of Switched-Capacitor Filters

Consider a switched-capacitor resonator:

Regular sampling:
Each opamp is busy settling only during one of the two clock phases
\[\rightarrow \text{Idle during the other clock phase} \]

Note: During ϕ_1 both opamps are idle

Switched-Capacitor Resonator Using Double-Sampling

Double-sampling:
• 2nd set of switches & sampling caps added to all integrators

• While one set of switches/caps sampling the other set transfers charge into the intg. cap

• Opamps busy during both clock phases

• Effective sampling freq. twice the clock freq. while opamp bandwidth requirement remains the same
Double-Sampling Issues

Issues to be aware of:
- Jitter in the clock
- Unequal clock phases
- Mismatch in sampling caps.

\rightarrow Results in parasitic passbands

Double-Sampled Fully Differential S.C. 6th Order All-Pole Bandpass Filter

Sixth Order Bandpass Filter Signal Flowgraph

Double-Sampled Fully Differential 6th Order S.C. All-Pole Bandpass Filter

- Cont. time termination (Q) implementation
- Folded-Cascode opamp with $f_c = 100$MHz used
- Center freq. 3.1MHz (Measured error >1%), filter $Q=55$
- Clock freq. 12.83MHz \Rightarrow effective oversampling ratio 8.27
- Measured dynamic range 46dB ($IM3=1\%$)

Switched-Capacitor Filter Application
Example: Voice-Band CODEC (Coder-Decoder) Chip

CODEC Transmit Path
Lowpass Filter Frequency Response

Note: $f_s=128$kHz
Note: $f_s=8$ kHz

Low Q bandpass (Q<1) filter shape → Implemented with lowpass followed by highpass
CODEC Transmit Path
Clocking Scheme

First filter (1st order RC type) performs anti-aliasing for the next S.C. biquad

The first 2 stage filters form 3rd order elliptic with corner frequency @ 32kHz → Anti-aliasing for the next S.C. lowpass filter with 3.4kHz corner freq.

The stages prior to the high-pass perform anti-aliasing for high-pass

Notice gradual lowering of clock frequency → Ease of anti-aliasing

SC Filter Summary

✓ Pole and zero frequencies proportional to
 – Sampling frequency \(f_s \)
 – Capacitor ratios
 ➢ High accuracy and stability in response
 ➢ Long time constants realizable without large R, C

✓ Compatible with transconductance amplifiers
 – Reduced circuit complexity, power dissipation

✓ Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)

ệm Issue: Sampled-data filters → require anti-aliasing prefiltering
Switched-Capacitor Filters versus Continuous-Time Filter Limitations

Considering overall effects:
- Opamp finite unity-gain-bandwidth
- Opamp settling issues
- Opamp finite slew rate
- Clock feedthru & switch charge injection
- Switch+ sampling cap. finite time-constant

→ Limited switched-capacitor filter performance frequency range

Summary
Filter Performance versus Filter Topology

<table>
<thead>
<tr>
<th></th>
<th>Max. Usable Bandwidth</th>
<th>SNDR</th>
<th>Freq. Tolerance w/o Tuning</th>
<th>Freq. Tolerance + Tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opamp-RC</td>
<td>~10MHz</td>
<td>60-90dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-C</td>
<td>~5MHz</td>
<td>40-60dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-RC</td>
<td>~5MHz</td>
<td>50-90dB</td>
<td>+30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Gm-C</td>
<td>~100MHz</td>
<td>40-70dB</td>
<td>+40-60%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Switched Capacitor</td>
<td>~10MHz</td>
<td>40-90dB</td>
<td><1%</td>
<td>–</td>
</tr>
</tbody>
</table>
Frequency Warping

- Frequency response
 - Continuous time (s-plane): imaginary axis
 - Sampled time (z-plane): unit circle
- Continuous to sampled time transformation
 - Should map imaginary axis onto unit circle
 - How do S.C. integrators map frequencies?

\[
H_{SC}(z) = \frac{C_s}{C_{int}} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}} = -\frac{C_s}{C_{int}} \frac{1}{2j \sin \pi f T_{int}}
\]

CT – SC Integrator Comparison

<table>
<thead>
<tr>
<th>CT Integrator</th>
<th>SC Integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H_{RC}(s) = -\frac{1}{s\tau} = \frac{1}{2\pi f RC \tau}]</td>
<td>[H_{SC}(z) = \frac{C_s}{C_{int}} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}} = -\frac{C_s}{C_{int}} \frac{1}{2j \sin \pi f_{SC} T_{int}}]</td>
</tr>
</tbody>
</table>

Identical time constants:
\[\tau = RC = \frac{C_{int}}{f_s C_s}\]

Set: \[H_{RC}(f_{RC}) = H_{SC}(f_{SC}) \rightarrow f_{RC} = \frac{L}{\pi} \sin \left(\frac{\pi f_{SC}}{f_s}\right)\]
LDI Integration

\[f_{\text{RC}} = \frac{f_s}{\pi} \sin \left(\frac{\pi f_{\text{SC}}}{f_s} \right) \]

- "RC" frequencies up to \(f_s / \pi \) map to physical (real) "SC" frequencies
- Frequencies above \(f_s / \pi \) do not map to physical frequencies
- Mapping is symmetric about \(f_s / 2 \) (aliasing)
- "Accurate" only for \(f_{\text{RC}} << f_s \)

Material Covered in EE247

Where are We?

✓ Filters
 - Continuous-time filters
 • Biquads & ladder type filters
 • Opamp-RC, Opamp-MOSFET-C, \(gm \)-C filters
 • Automatic frequency tuning
 - Switched capacitor (SC) filters

- Data Converters
 - D/A converter architectures
 - A/D converter
 • Nyquist rate ADC - Flash, Pipeline ADCs, …
 • Oversampled converters
 • Self-calibration techniques
- Systems utilizing analog/digital interfaces
Data Converters

• Data converters
 – Areas of application
 – Data converter transfer characteristics
 – Sampling, aliasing, reconstruction
 – Amplitude quantization
 – Static converter error sources
 • Offset
 • Full-scale error
 • Differential non-linearity (DNL)
 • Integral non-linearity (INL)

Data Converter Applications
Data Converter Basics

- DSPs benefited from device scaling

- However, real world signals are still analog:
 - Continuous time
 - Continuous amplitude

- DSP can only process:
 - Discrete time
 - Discrete amplitude

→ Need for data conversion from analog to digital and digital to analog

A/D & D/A Conversion

A/D Conversion

- Analog Input
- Anti-alias Filtering
- Sampling
- Quantization
- Digital Filter
- Digital Coding
- Digital Out

D/A Conversion

- Digital In
- Digital Decoding
- DAC
- Analog Hold
- Reconstruction Filtering
- Analog Out
Data Converters

- Stand alone data converters
 - Used in variety of systems
 - Example: Analog Devices AD9235 12bit/ 65Ms/s
 ADC- Applications:
 - Ultrasound equipment
 - IF sampling in wireless receivers
 - Various hand-held measurement equipment
 - Low cost digital oscilloscopes

Data Converters

- Embedded data converters
 - Integration of data conversion interfaces along with DSPs and/or RF circuits → Cost, reliability, and performance
 - Main issues
 - Feasibility of integrating sensitive analog functions in a technology typically optimized for digital performance
 - Down scaling of supply voltage as a result of downscaling of feature sizes
 - Interference & spurious signal pick-up from on-chip digital circuitry and/or high frequency RF circuits
 - Portable applications dictate low power consumption
Embedded Converters
Example: Typical Cell Phone

Contains in integrated form:
- 4 Rx filters
- 4 Tx filters
- 4 Rx ADCs
- 4 Tx DACs
- 3 Auxiliary ADCs
- 8 Auxiliary DACs

Total: Filters → 8
ADCs → 7
DACs → 12

D/A Converter Transfer Characteristics

- An ideal digital-to-analog converter:
 - Accepts digital inputs b_1-b_n
 - Produces either an analog output voltage or current
 - Assumption (will be revisited)
 - Uniform, binary digital encoding
 - Unipolar output ranging from 0 to V_{FS}

Nomenclature:
$N = \# \text{ of bits}$
$V_{FS} = \text{full scale output}$
$\Delta = \text{min. step size} \rightarrow \text{LSB}$
$\Delta = \frac{V_{FS}}{2^N}$
or $N = \log_2 \frac{V_{FS}}{\Delta} \rightarrow \text{resolution}$
D/A Converter Transfer Characteristics

\[N = \text{# of bits} \]

\[V_{FS} = \text{full scale output} \]

\[\Delta = \text{min. step size} \rightarrow \text{LSB} \]

\[\Delta = \frac{V_{FS}}{2^N} \]

\[V_o = V_{FS} \sum_{i=0}^{N} b_i \times 2^{-i} \]

\[= \Delta \times \sum_{i=0}^{N} b_i \times 2^{N-i}, \quad b_i = 0 \text{ or } 1 \]

Note: D(b_i = 1, all i)

\[\rightarrow V_{o_{\text{max}}} = V_{FS} - \Delta \]

\[\rightarrow V_{o_{\text{max}}} = V_{FS} \left(1 - \frac{1}{2^N}\right) \]

D/A Converter Example: D/A with 3-bit Resolution

Example: for \(N = 3 \) and \(V_{FS} = 0.8V \)

input code \(\Rightarrow 101 \)

Find the output value \(V_o \)

\[V_o = \Delta \left(b_1 \times 2^2 + b_2 \times 2^1 + b_3 \times 2^0 \right) \]

Then: \(\Delta = V_{FS} / 2^3 = 0.4V \)

\[\rightarrow V_o = 0.4V \left(1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \right) = \]

\[\rightarrow V_o = 0.5V \]

Note: MSB \(\rightarrow V_{FS} / 2 \) & LSB \(\rightarrow V_{FS} / 2^N \)
Ideal 3-Bit D/A Transfer Characteristic

- Ideal DAC introduces no error!
- One-to-one mapping from input to output

Ideal Response

Digital Input Code

Analog Output

Step Height (VLSB Δ)

A/D Converter Transfer Characteristics

- An ideal analog-to-digital converter:
 - Accepts analog input in the form of either voltage or current
 - Produces digital output either in serial or parallel form
 - Assumption (will be revisited)
 - Unipolar input ranging from 0 to V_{FS}
 - Uniform, binary digital encoding

\[
N = \# \text{ of bits} \\
V_{FS} = \text{full scale output} \\
\Delta = \min. \text{ resolvable input} \rightarrow 1 \text{ LSB} \\
\Delta = \frac{V_{FS}}{2^N} \\
\text{or } N = \log_2 \frac{V_{FS}}{\Delta} \rightarrow \text{resolution}
\]
Ideal A/D Transfer Characteristic
Example: 3Bit A/D Converter

- Ideal ADC introduces error with max peak-to-peak:
 \[\pm \frac{1}{2^{N}} \Delta \]
 \[\Delta = \frac{V_{FS}}{2^{N}} \]
 \(N = \# \text{ of bits} \)

- This error is called "quantization error"

- For a given VFS as N increases, quantization error decreases \(\Rightarrow \) resolution increases

Non-Linear Data Converters

- So far data converter characteristics studied are with uniform, binary digital encoding

- For some applications to maximize dynamic range, non-linear coding is used e.g. Voice-band telephony,
 - Small signals \(\Rightarrow \) larger \# of codes
 - Large signals \(\Rightarrow \) smaller \# of codes
Example: Non-Linear A/D Converter For Voice-Band Telephony Applications

Non-linear ADC and DAC used in voice-band CODECs

- To maximize dynamic range without need for large # of bits
- Non-linear Coding scheme called A-law & μ-law is used
- Also called companding

Data Converter Performance Metrics

- Data Converters are typically characterized by static, time-domain, & frequency domain performance metrics:
 - Static
 - Offset
 - Full-scale error
 - Differential nonlinearity (DNL)
 - Integral nonlinearity (INL)
 - Monotonicity
 - Dynamic
 - Delay & settling time
 - Aperture uncertainty
 - Distortion-harmonic content
 - Signal-to-noise ratio (SNR), Signal-to-(noise+distortion) ratio (SNDR)
 - Idle channel noise
 - Dynamic range & spurious-free dynamic range (SFDR)
Typical Sampling Process

C.T. ⇒ S.D. ⇒ D.T.

Continuous Time

Sampled Data (e.g. T/H signal)

Clock

Discrete Time

Physical Signals

"Memory Content"

Discrete Time Signals

- A sequence of numbers (or vector) with discrete index time instants

- Intermediate signal values not defined (not the same as equal to zero!)

- Mathematically convenient, non-physical

- We will use the term "sampled data" for related signals that occur in real, physical interface circuits
Uniform Sampling

- Samples spaced T seconds in time
- Sampling Period T ⇔ Sampling Frequency $f_s = 1/T$
- Problem: Multiple continuous time signals can yield exactly the same discrete time signal (aliasing)

Data Converters

- ADC/DACs need to sample/reconstruct to convert from continuous-time to discrete-time signals and back
- Purely mathematical discrete-time signals are different from "sampled-data signals" that carry information in actual circuits
- Question: How do we ensure that sampling/reconstruction fully preserve information?
Aliasing

- The frequencies f_x and $nf_x \pm f_x$, n integer, are indistinguishable in the discrete time domain.

- Undesired frequency interaction and translation due to sampling is called aliasing.

- If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal!

Frequency Domain Interpretation

- **Signal scenario before sampling**

- **Signal scenario after sampling** → DT

 > Signals @ $nf_x \pm f_{\text{max signal}}$ fold back into band of interest → Aliasing
Brick Wall Anti-Aliasing Filter

Sampling at Nyquist rate ($f_s = 2f_{signal}$) → required brick-wall anti-aliasing filters

Practical Anti-Aliasing Filter

- Practical filter: Nonzero "transition band"
- In order to make this work, we need to sample faster than 2x the signal bandwidth
- "Oversampling"
Data Converter Classification

• $f_s > 2f_{max}$ Nyquist Sampling
 - "Nyquist Converters"
 - Actually always slightly oversampled (e.g. CODEC $f_{sig}^{max} = 3.4kHz$ &
 ADC sampling $8kHz \rightarrow f_s/f_{max} = 2.35$)
 - Requires anti-aliasing filtering prior to A-to-D conversion

• $f_s >> 2f_{max}$ Oversampling
 - "Oversampled Converters"
 - Anti-alias filtering is often trivial
 - Oversampling is also used to reduce quantization noise, see later
 in the course...

• $f_s < 2f_{max}$ Undersampling (sub-sampling)

Sub-Sampling

- Sub-sampling → sampling at a rate less than Nyquist rate → aliasing
- For signals centered @ an intermediate frequency → Not destructive!
- Sub-sampling can be exploited to mix a narrowband RF or IF signal down
to lower frequencies
Nyquist Data Converter Topics

- Basic operation of data converters
 - Uniform sampling and reconstruction
 - Uniform amplitude quantization
- Characterization and testing
- Common ADC/DAC architectures
- Selected topics in converter design
 - Practical implementations
 - Compensation & calibration for analog circuit non-idealities
- Figures of merit and performance trends

Where Are We Now?

- We now know how to preserve signal information in CT → DT transition
- How do we go back from DT → CT?
Ideal Reconstruction

\[x(k) \Rightarrow x(t) \]

- The DSP books tell us:

\[x(t) = \sum_{k=-\infty}^{\infty} x(k) \cdot g(t-kT) \quad g(t) = \frac{\sin(2\pi B t)}{2\pi B t} \]

- Unfortunately not all that practical...

Zero-Order Hold Reconstruction

- How about just creating a staircase, i.e. hold each discrete time value until new information becomes available?

- What does this do to the frequency content of the signal?

- Let's analyze this in two steps...
DT → CT: Infinite Zero Padding

Time Domain

- DT sequence: \[\cdots \uparrow \uparrow \uparrow \cdots \]

Frequency Domain

- Infinite Zero padded
- Interpolation: CT Signal

\[\cdots \uparrow \uparrow \uparrow \cdots \]\n
Next step: pass the samples through a sample & hold stage (ZOH)

\[
|H(f)| = \left| \frac{\sin(\pi f T_s)}{\pi f T_s} \right|
\]

Hold Pulse $T_p = T_s$ Transfer Function

```
abs(H(f))
```

\[
T_p = T_s
\]
ZOH Spectral Shaping

Continuous Time Pulse Train Spectrum

ZOH Transfer Function ("Sinc Shaping")

ZOH output, Spectrum of Staircase Approximation

Smoothing Filter

- Order of the filter required is a function of oversampling ratio
- High oversampling helps reduce filter order requirement

Filter out the high frequency content associated with staircase shape of the signal
Summary

- Sampling theorem, $f_s > 2f_{\text{max}}$, usually dictates anti-aliasing filter
- If theorem is met, CT signal can be recovered from DT without loss of information
- ZOH and smoothing filter reconstruct CT signal from DT vector
- Oversampling helps reduce order & complexity of anti-aliasing & smoothing filters