EE247
Lecture 18

ADC Converters
- Sampling (continued)
 - Bottom-plate switching
- Track & hold
 • T/H circuits
 • T/H combined with summing/difference function
 • T/H circuit incorporating gain & offset cancellation
 • T/H aperture uncertainty
- ADC architectures and design
 • Serial- slope type
 • Successive approximation
 • Flash ADC and its sources of error: comparator offset, sparkle code & meta-stability

EE247
Lecture 18

• Administrative issues
 ▪ Midterm exam on Thurs. Nov. 5th
 o You can only bring one 8x11 paper with your own written notes (please do not photocopy)
 o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones....
 o Midterm includes material covered to end of lecture 14
Avoiding Switch Charge Injection

Bottom Plate Sampling

- Switches M2 opened slightly earlier compared to M1
 → Injected charge due to turning off M2 is constant since its GS voltage is constant & eliminated when used differentially
- Since C_s bottom plate is already open when M1 is switched off:
 → No signal dependant charge injected on C_s

Flip-Around Track & Hold

• Concept based on bottom-plate sampling
Flip-Around T/H-Basic Operation

φ₁ → high

\[Q_{φ₁} = V_{IN} \times C \]

Note: Opamp has to be stable in unity-gain configuration

φ₂ → high

\[Q_{φ₂} = V_{OUT} \times C \]

\[V_{OUT} = V_{IN} \]
Flip-Around T/H - Timing

S1 opens earlier than S1A
No resistive path from C bottom plate to Gnd → charge can not change
"Bottom Plate Sampling"

Charge Injection

- At the instant of transitioning from track to hold mode, some of the charge stored in sampling switch S1 is dumped onto C

- With "Bottom Plate Sampling", only charge injection component due to opening of S1 and is to first-order independent of v_{IN}
 - Only a dc offset is added. This dc offset can be removed with a differential architecture
Flip-Around T/H

- S1 is chosen to be an n-channel MOSFET
- Since it always switches the same voltage, its on-resistance, R_{S1}, is signal-independent (to first order)
- Choosing $R_{S1} >> R_{S1A}$ minimizes the non-linear component of $R = R_{S1A} + R_{S1}$
 - Typically, S1A is a wide (much lower resistance than S1) & constant V_{GS} switch
 - In practice size of S1A is limited by the (nonlinear) S/D capacitance that also adds distortion
 - If S1A’s resistance is negligible \rightarrow delay depends only on S1 resistance
 - S1 resistance is independent of V_{IN} \rightarrow error due to finite time-constant \rightarrow independent of V_{IN}

Note: Among all switches only S1A & S2A experience full input voltage swing
Differential Flip-Around T/H
Choice of Sampling Switch Size

- THD simulated w/o sampling switch boosted clock → -45dB
- THD simulated with sampling switch boosted clock (see graph)

Offset voltage associated with charge injection of S11 & S12 cancelled by differential nature of the circuit
During input sampling phase → amp outputs shorted together

Differential Flip-Around T/H

• Gain = 1
• Feedback factor = 1

Issues: Input Common-Mode Range

\[\Delta V_{\text{in-cm}} = V_{\text{out,cm}} - V_{\text{sig,cm}} \]

Drawback: Amplifier needs to have large input common-mode compliance

\[\Delta V_{\text{in-cm}} = 1.5V - 0.5V = 1V \]
Input Common-Mode Cancellation

• Note: Shorting switch M3 added

Input Common-Mode Cancellation

Track mode (ϕ high)
$V_{C1} = V_{I1}$, $V_{C2} = V_{I2}$
$V_{o1} = V_{o2} = 0$

Hold mode (ϕ low)
$V_{o1} + V_{o2} = 0$
$V_{o1} - V_{o2} = (V_{I1} - V_{I2})(C_1/(C_1 + C_3))$

\rightarrow Input common-mode level removed
Switched-Capacitor Techniques Combining Track & Hold with Other Functions

- T/H + Charge redistribution amplifier
- T/H & Input difference amplifier
- T/H & summing amplifier
- Differential T/H combined with gain stage
- Differential T/H including offset cancellation

T/H + Charge Redistribution Amplifier

Track mode: (S1, S3 \(\rightarrow\) on S2 \(\rightarrow\) off)
\[
\begin{align*}
V_{C1} &= V_{os} - V_{IN}, \quad V_{C2} = 0 \\
V_O &= V_{os}
\end{align*}
\]
T/H + Charge Redistribution Amplifier
Hold Mode

\[V_{C1} \rightarrow V_{os} \]
\[\Delta V_{C1} = V_{os} - (V_{os} - V_{IN}) = V_{IN} \]
\[\Delta Q_1 = C_1 \Delta V_{C1} = C_1 V_{IN} \]
\[\Delta Q_2 = C_2 \Delta V_{C2} = \Delta Q_1 \]
\[\Delta V_{C2} = \left(\frac{C_1}{C_2} \right) V_{C1} = V_{C2} \]
\[V_o = V_{C2} + V_{os} = \left(\frac{C_1}{C_2} \right) V_{IN} + V_{os} \]

→ Offset NOT cancelled, but not amplified
→ Input-referred offset \(=(\frac{C_2}{C_1}) \times V_{OS} \), & often \(C_2 < C_1\)

T/H & Input Difference Amplifier

Sample mode:
(S1, S3 \(\rightarrow\) on S2 \(\rightarrow\) off)
\[V_{C1} = V_{os} - V_{IN} \]
\[V_{o} = V_{os} \]
Input Difference Amplifier

Cont’d

Subtract/Amplify mode (S1, S3 → off S2 → on)
During previous phase:

\[V_{C1} = V_{os} - V_{I1} \]
\[V_c = V_{os} \]

\[V_{C1} = V_{os} - V_{I2} \]
\[\Delta V_{C1} = (V_{os} - V_{I2}) - (V_{os} - V_{I1}) = V_{I1} - V_{I2} \]
\[\Delta V_{C2} = \left(\frac{C_1}{C_2} \right) \Delta V_{C1} = \left(\frac{C_1}{C_2} \right) (V_{I1} - V_{I2}) \]
\[V_O = \left(\frac{C_1}{C_2} \right) (V_{I1} - V_{I2}) + V_{os} \]

→ Offset NOT cancelled, but not amplified
→ Input-referred offset = \((C_2/C_1)\times V_{os}\), & \(C_2 < C_1\)

T/H & Summing Amplifier
Sample mode (S1, S3, S5 → on, S2, S4 → off)

\[V_{C1} = V_{os} - V_{I1}, \quad V_{C2} = V_{os} - V_{I3}, \quad V_{C3} = 0 \]

\[V_o = V_{os} \]

Amplify mode (S1, S3, S5 → off, S2, S4 → on)

\[V_{C1} = V_{a1} - V_{a2} \quad \Rightarrow \Delta V_{C1} = V_{I1} - V_{I2} \]

\[V_{C2} = V_{a3} - V_{a4} \quad \Rightarrow \Delta V_{C2} = V_{I3} - V_{I4} \]

\[\Delta Q_2 = \Delta Q_1 + \Delta Q_2 = C_1 V_{C1} + C_2 \Delta V_{C2} \]

\[\Delta V_{C3} = \frac{\Delta Q_2}{C_3} = (\frac{C_1}{C_2})(V_{I1} - V_{I2}) + (\frac{C_2}{C_3})(V_{I3} - V_{I4}) \]

\[V_o = \left(\frac{C_1}{C_2} \right) (V_{I1} - V_{I2}) + \left(\frac{C_2}{C_3} \right) (V_{I3} - V_{I4}) + V_{os} \]
Differential T/H Combined with Gain Stage

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp

Differential T/H Combined with Gain Stage

- Gain = 4C/C = 4
- Input voltage common-mode level removed → opamp can have low input common-mode compliance
- Amplifier offset NOT removed

Differential T/H Including Offset Cancellation

- Operation during offset cancellation phase shown
- Auxiliary inputs added with \(A_{\text{min}} / A_{\text{max}} = 10 \)
- During offset cancellation phase:
 - Aux. amp configured in unity-gain mode: \(\rightarrow \) offset stored on \(C_{AZ} \) & canceled during the signal acquisition phase

Differential T/H Including Offset Cancellation

Operational Amplifier

- Operational amplifier \(\rightarrow \) dual input folded-cascode opamp
- \(M_{3,4} \) auxiliary input, \(M_{1,2} \) main input
- To achieve 1/10 gain ratio \(W_{M_{3,4}} = 1/10x W_{M_{1,2}} \) & current sources are scaled by 1/10
- \(M_{5,6,7} \) \(\rightarrow \) common-mode control
- Output stage \(\rightarrow \) dual cascode \(\rightarrow \) high DC gain
 \[V_{out} = g_{m1,2}r_o V_{in1} + g_{m3,4}r_o V_{in2} \]

Differential T/H Including Offset Cancellation Phase

- During offset cancellation phase \(AZ \) and \(S1 \) closed \(\rightarrow \) main amplifier offset amplified by \(g_{m1}/g_{m2} \) & stored on \(C_{AZ} \)
- Auxiliary amp chosen to have lower gain so that:
 - Aux. amp charge injection associated with opening of switch \(AZ \) \(\rightarrow \) reduced by \(A_{aux}/A_{main} = 1/10 \)
 - Insignificant increase in power dissipation resulting from addition of aux. inputs
- Requires an extra auto-zero clock phase
Track & Hold

Aperture Time Error

Transition from track to hold:
- Occurs when device turns fully off
 \[V_{\text{CLK}} = V_{\text{in}} + V_{\text{TH}} \]
- Sharp fall-time wrt signal change
 \(\rightarrow \) no aperture error

Slow falling clock \(\rightarrow \) aperture error

\[V_{\text{in}} = A \sin(2\pi f_{\text{in}} t) \]

\[\epsilon = f_{\text{in}} \times A \times \frac{t_{\text{fall}}}{V_{\text{CLK}}} \]

\[SDR = -20 \log_{10} \epsilon - 4 \text{ [dB]} \] (imperical see Ref.)

Example:
- Nyquist rate 10-bit ADC & \(A = V_{\text{CLK}} / 4 \)
 \(\rightarrow \) SQNR = 62 dB
- For distortion due to aperture error
 \(< \) quant noise
 \(\rightarrow \) \(t_{\text{fall}} < 2 \times 10^{-3} / f_{\text{in}} \)
 \(\rightarrow \) Worst case: \(f_{\text{in}} = f_{\text{s}} / 2 \)
 \(\rightarrow \) \(t_{\text{fall}} < 4 \times 10^{-3} / f_{\text{s}} \)
 \(\rightarrow \) e.g. \(f_{\text{s}} = 1000 \text{MHz} \), \(t_{\text{fall}} < 4 \text{psec} \)

Track & Hold
Aperture Time Error

• Aperture error analysis applies to simple sampling network

• Bottom plate sampling \rightarrow minimizes aperture error

• Boosted clock \rightarrow reduces aperture error

\rightarrow Clock edge fall/rise trade-off between switch charge injection versus aperture error

ADC Architectures

- Slope type converters
- Successive approximation
- Flash
- Time-interleaved / parallel converter
- Folding
- Residue type ADCs
 - Two-step
 - Pipeline
 - ...
- Oversampled ADCs

Various ADC Architectures
Resolution/Conversion Rate

- Oversampled & Serial
 - Algorithmic
 - e.g. Succ. Approx.
- Subranging
 - e.g. Pipelined
- Folding & Interpolative
- Parallel & Time Interleaved
Serial ADC
Single Slope

- Counter starts counting @ \(V_{Ramp} = 0 \)
- Counter stops counting for \(V_{IN} = V_{Ramp} \)

Note that \(dt \) is proportional to \(V_{IN} \)
- Counter output proportional to \(T1 = nT_{clock} \)
 \(\Rightarrow \) Counter output proportional to \(V_{IN} \)
 \(\Rightarrow 2^n x T_{clock} = V_{FS} \)
Single Slope ADC

- Advantages:
 - Low complexity & simple
 - INL depends on ramp linearity & not component matching
 - Inherently monotonic

- Disadvantages:
 - Slow (2^N clock pulses for N-bit conversion) (e.g. N=16, f_{clock}=1MHz → needs 65000x1μs=65ms/conversion)
 - Hard to generate precise ramp required for high resolution ADCs
 - Need to calibrate ramp slope versus V_{IN}

- Better: Dual Slope, Multi-Slope

Serial ADC
Dual Slope

- First: V_{IN} is integrated for a fixed time (2^N x T_{CLK})
 → V_o = 2^N x T_{CLK} V_{IN}/τ_{int}
- Next: V_o is de-integrated with V_{REF} until V_o=0
 → Counter output = 2^N V_{IN}/V_{REF}
Dual Slope ADC

- Integrate V_{in} for fixed time (T_{INT}), de-integrate with V_{REF} applied → $T_{De-Int} \approx 2^N T_{CLK} x V_{in}/V_{REF}$

- Most laboratory DVMs use this type of ADC

Dual Slope ADC

- Advantage:
 - Accuracy to 1st order independent of integrator time-constant and clock period
 - Comparator offset referred to input is attenuated by integrator high DC gain
 - Insensitive to most linear error sources
 - DNL is a function of clock jitter
 - Power line (60Hz) xtalk effect on reading can be canceled by: choosing conversion time multiple of 1/60Hz
 - High accuracy achievable (16+bit)

- Disadvantage:
 - Slow (maximum $2^N x T_{CLK}$ per conversion)
 - Integrator opamp offset results in ADC offset (can cancel)
 - Finite opamp gain gives rise to INL
Successive Approximation ADC (SAR)

- Algorithmic type ADC
- Based on binary search over DAC output

\[
\begin{align*}
\text{Set DAC[MSB]} &= 1 \\
\text{VIN} &> \text{VDAC}? \\
\text{Set DAC[MSB-1]} &= 1 \\
\text{VIN} &> \text{VDAC}? \\
\vdots \\
\text{Set DAC[LSB]} &= 1 \\
\text{VIN} &> \text{VDAC}? \\
\text{DAC[Input]} &= \text{ADC[Output]}
\end{align*}
\]

- High accuracy achievable (16+ Bits)
- Required N clock cycles for N-bit conversion (much faster than slope type)
- Moderate speed (highest SAR conversion rate 2Ms/sec & 18bits)

Example: 6-bit ADC & \(V_{IN} = \frac{5}{8}V_{REF}\)

\[
\begin{align*}
\begin{array}{c}
\text{ADC} \rightarrow 101000 \\
\text{Time} / \text{Clock Ticks}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
1/2 \\
3/4 \\
5/8 \\
11/16 \\
21/32 \\
41/64
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{Test MSB} \\
\text{Test MSB-1}
\end{align*}
\]
Example: SAR ADC
Charge Redistribution Type

- Built with binary weighted capacitors, switches, comparator & control logic
- T/H inherent in DAC

Charge Redistribution Type SAR DAC
Operation: MSB

- Operation starts by connecting all top plate to gnd and all bottom plates to V_{in}
- To test the MSB all top plate are opened bottom plate of 32C connected to V_{REF} & rest of bottom plates connected to ground \rightarrow input to comparator = $-V_{in} + V_{REF}/2$
- Comparator is strobed to determine the polarity of input signal:
 - If negative MSB=1, else MSB=0
- The process continues until all bits are determined
Example: SAR ADC
Charge Redistribution Type

- To 1st order parasitic (C_p) insensitive since top plate driven from initial 0 to final 0 by the global negative feedback
- Linearity is a function of accuracy of C ratios
- Possible to add a C ratio calibration cycle (see Ref.)

Flash ADC

- B-bit flash ADC:
 - DAC generates all possible $2^B - 1$ levels
 - $2^B - 1$ comparators compare V_{IN} to DAC outputs
 - Comparator output:
 - If $V_{DAC} < V_{IN}$ → 1
 - If $V_{DAC} > V_{IN}$ → 0
 - Comparator outputs form thermometer code
 - Encoder converts thermometer to binary code
- Application example: 6-bit Flash ADC in Disk Drives with Gs/s conversion rate
Flash ADC Converter

Example: 3-bit Conversion

Encoder

Flash Converter Characteristics

• Very fast: only 1 clock cycle per conversion
 – ½ clock cycle → \(V_{IN} \) & \(V_{DAC} \) comparison
 – ½ clock cycle → \(2^B \) - 1 to B encoding

• High complexity: \(2^B \) - 1 comparators

• Input capacitance of \(2^B \) - 1 comparators connected to the input node:
 → High capacitance @ input node
Flash Converter
Example: 8-bit ADC Design Considerations

- 8-bit \rightarrow 255 comparators
- $V_{REF} = 1V \rightarrow 1$LSB = 4mV
- DNL $< 1/2$LSB \rightarrow Comparator input referred offset < 2mV
- Assuming close to 100% yield, 2mV = $6\sigma_{offset}$ $\rightarrow \sigma_{offset} < 0.33$mV

Flash ADC Converter
Example: 8-bits ADC (continued)

- $1\sigma_{offset} < 0.33$mV
- Let us assume in the technology used:
 - V_{offset}-per-unit-sqrt(WxL) $= 3$ mV$\sqrt{\mu}$
 - $V_{offset} = \frac{3mV}{\sqrt{W\times L}} = 0.33mV \rightarrow W \times L = 83\mu^2$
 - Assuming: $C_{gs} = 9 fF / \mu^2 \rightarrow C_{gs} = 2 \times C_{gs} W \times L = 496 fF$
 - Total max. input capacitance: $255 \times 0.496 = 126.5 pF$

- Issues:
 - Si area quite large
 - Large ADC input capacitance
 - Since depending on input voltage level different number of comparator input transistors would be on/off- total input capacitance varies as input varies
 - Nonlinear input capacitance could give rise to signal distortion
Flash ADC Converter
Example (continued)

Trade-offs:
– Allowing larger DNL e.g. 1LSB instead of 0.5LSB:
 • Increases the maximum allowable input-referred offset voltage by a factor of 2
 • Decreases the required device WxL by a factor of 4
 • Reduces the input device area by a factor of 4
 • Reduces the input capacitance by a factor of 4!
– Reducing the ADC resolution by 1-bit
 • Increases the maximum allowable input-referred offset voltage by a factor of 2
 • Decreases the required device WxL by a factor of 4
 • Reduces the input device area by a factor of 4
 • Reduce the input capacitance by a factor of 4

Flash Converter
Maximum Tolerable Comparator Offset versus ADC Resolution

Assumption:
\[DNL = 0.5\text{LSB} \]

Note:
Graph shows max. tolerable offset, note that depending on min acceptable yield, the derived offset numbers are associated with 2\(\sigma\) to 6\(\sigma\) offset voltage
Flash Converter Sources of Error

- Comparator input:
 - Offset
 - Nonlinear input capacitance
 - Feedthrough of input signal to reference ladder
 - Kickback noise (disturbs reference)
 - Signal dependent sampling time

- Comparator output:
 - Sparkle codes (... 11101000 ...)
 - Metastability

Typical Flash Output Encoder

- Thermometer code
- 1-of-n code
- Final encoding: NOR ROM
- Ideally, for each code, only one ROM row is on

 Thermometer to Binary encoder ROM

Output: 0 0 1 1
Sparkle Codes

Correct Output: 1000

Problem: Two rows are on

Erroneous Output: 1110

Æ Up to ~½ FS error!!

Erroneous 0 (comparator offset?)

Sparkle Tolerant Encoder

• Protects against a single sparkle.
• Possible to improve level of sparkle protection by increasing # of NAND gate inputs

Ref: C. Mangelsdorf et al, "A 400-MHz Flash Converter with Error Correction," JSSC February 1990, pp. 997-1002
Meta-Stability

Different gates interpret metastable output X differently

Correct output: 1000
Erroneous output: 0000

Solutions:
- Latches (high power)
- Gray encoding

Gray Encoding
Example: 3bit ADC

<table>
<thead>
<tr>
<th>Thermometer Code</th>
<th>Gray</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_7 T_6 T_5 T_4 T_3 T_2 T_1</td>
<td>G_3 G_2 G_1</td>
<td>B_3 B_2 B_1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1</td>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 0 0 0 1 1</td>
<td>0 1 1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 0 0 0 1 1 1</td>
<td>1 0 1</td>
<td>0 1 1</td>
</tr>
<tr>
<td>0 0 1 1 1 1 1</td>
<td>1 1 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>0 1 1 1 1 1 1</td>
<td>1 0 1</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1</td>
<td>1 0 0</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

- Each T_i affects only one G_i
- Avoids disagreement of interpretation by multiple gates
- Protects also against sparkles
- Follow Gray encoder by (latch and) binary encoder

\[
G_1 = T_1 \overline{T_3} + T_5 \overline{T_7}
\]
\[
G_2 = T_2 \overline{T_6}
\]
\[
G_3 = T_4
\]
Voltage Comparators

Play an important role in majority of ADCs
Function: Compare the instantaneous value of two analog signals & generate a digital output voltage based on the sign of the difference:

\[
\begin{align*}
\text{If } V_{i+} - V_{i-} > 0 & \Rightarrow V_{\text{out}} = "1" \\
\text{If } V_{i+} - V_{i-} < 0 & \Rightarrow V_{\text{out}} = "0"
\end{align*}
\]

Voltage Comparator Architectures

Comparator architectures:
- High gain amplifier with differential analog input & single-ended large swing output
 - Output swing has to be compatible with driving digital logic circuits
 - Open-loop amplification → no frequency compensation required
 - Precise gain not required
- Latched comparators; in response to a strobe (clock edge), input stage disabled & digital output stored in a latch till next strobe
 - Two options for implementation:
 - Latch-only comparator
 - Low-gain preamplifier + high-sensitivity latch
- Sampled-data comparators
 - T/H input
 - Offset cancellation