UNIVERSITY OF CALIFORNIA
 College of Engineering Department of Electrical Engineering
 and Computer Sciences

Homework 6
EECS 247
H. Khorramabadi

Due Tues. November 23, 2010
FALL 2010

1. A basic NMOS track and hold circuit is shown below. The clock applied to the gate of the transistor swings from $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. Assume an ideal square law model for the transistor with $\mathrm{V}_{\mathrm{TH}}=0.2 \mathrm{~V}$ and $\mu \mathrm{C}_{\mathrm{ox}}=250 \mu \mathrm{~A} / \mathrm{V}^{2}$. Ignore body effect.
a) Suppose this circuit precedes a 14 -bit ADC. How large should we choose C so that the input referred rms noise from the sampler is equal to 0.25 LSB of the ADC at $\mathrm{T}=27^{\circ} \mathrm{C}$? Compared to the case where only quantization noise is present, how much is the overall SNR degraded by the input-referred kT/C noise.
b) If the clock has a 50% duty cycle, calculate the maximum clock frequency at which inputs between $0 \ldots 1.0 \mathrm{~V}$ input can be sampled to within $1 / 8 \mathrm{LSB}$ accuracy at 14 bit resolution. Assume $\mathrm{C}=15 \mathrm{pF}$. You can use the average resistance for M1.
c) In practice, what are the other factors affecting the accuracy of this sampling front-end?

2. Consider a 6 -bit flash ADC with an ideal reference resistor string and $\mathrm{V}_{\text {ref }}=1 \mathrm{~V}$. Assume that the comparators have an offset voltage with standard deviation $\sigma_{\mathrm{OS}}=3 \mathrm{mV}$. What are the standard deviations of the converter's worst case DNL and INL?
3. Shown below is the block diagram of a pipelined ADC. Note that the input voltage is centered around ground level.

The first stage has the following block diagram:

The rest of the stages have the block diagram shown bellow:

a) What is the effective number of bits for stage 1 and the following stages? What is the raw number of bits for each stage?
b) How many stages are needed to implement a 12 bit ADC ?
c) If each stage takes one clock cycle per conversion, what is the minimum signal latency from the analog input to the digital output?
d) Derive the residue plot for the first and the following stages.
e) What is the maximum tolerable comparator offset in the $1^{\text {st }}$ stage (assume all other stages are ideal)? Show your derivation on the residue plot/s.
f) What is the maximum tolerable comparator offset in the 2nd stage (assume all other stages are ideal)? Show your derivation on the residue plot/s. b

