Solution EE247 HW4 2010

Problem No. 1: DAC Static Characteristics

a. Assume the transition points of the ideal 3-bit DAC are

$$
T P_{i}=L S B \times i, \text { where } \mathrm{i}=0,1,2, \ldots, 7
$$

For end points, $\mathrm{TP}_{0}=0$ and $\mathrm{TP}_{7}=350 \mathrm{mV}$. Since the actual test measures $\mathrm{TP}_{0}=-2 \mathrm{mV}$ and $\mathrm{TP}_{7}=363 \mathrm{mV}$,

$$
\begin{aligned}
& \text { Offset Error }=-2 m V-0=-2 m V \text {, or }-0.04 L S B \\
& \text { Full Scale Error }=363 m V-350 m V=13 m V \text {, or } 0.26 L S B
\end{aligned}
$$

b. The ideal gain is obviously $1 \mathrm{LSB} /$ code. The actual gain is however

$$
\text { Gain' }=\frac{T P_{7}-T P_{0}}{7}=\frac{365 \mathrm{mV}}{7}=52.14 \mathrm{mV} / \mathrm{code}, \text { or } 1.04 \mathrm{LSB} / \mathrm{code}
$$

Gain error is therefore

$$
\varepsilon_{\text {gain }}=\text { Gain'-Gain }=0.04 \mathrm{LSB} / \mathrm{code}
$$

c. Now that the actual LSB size $(52.14 \mathrm{mV})$ is computed, the measurement data can be tabulated as follows to calculate DNL and INL.

Code	End-Point Corrected Codes	Transition Point	Segment Size	DNL	INL
000	0	-2 mV	-	-	0
001	52.14 mV	52 mV	54 mV	$1.86 \mathrm{mV}, 0.04 \mathrm{LSB}$	0.04 LSB
010	104.28 mV	98 mV	46 mV	$-6.14 \mathrm{mV},-0.12 \mathrm{LSB}$	-0.08 LSB
011	156.42 mV	160 mV	62 mV	$9.86 \mathrm{mV}, 0.19 \mathrm{LSB}$	0.11 LSB
100	208.56 mV	205 mV	45 mV	$-7.14 \mathrm{mV},-0.14 \mathrm{LSB}$	-0.03 LSB
101	260.7 mV	245 mV	40 mV	$-12.14 \mathrm{mV},-0.23 \mathrm{LSB}$	-0.26 LSB
110	312.84 mV	305 mV	60 mV	$7.86 \mathrm{mV}, 0.15 \mathrm{LSB}$	-0.11 LSB
111	365 mV	363 mV	58 mV	$5.86 \mathrm{mV}, 0.11 \mathrm{LSB}$	0

d. From above table maximum DNL is $|-0.23 \mathrm{LSB}|=0.23 \mathrm{LSB}$.

Maximum INL is $|-0.26 \mathrm{LSB}|=0.26 \mathrm{LSB}$.

Problem No. 2: Ramp Histogram Test

a. From the given ramp histogram, DNL and INL (except the first and last codes) can be calculated using Matlab:

b. From above charts, peak positive $\mathrm{DNL}=0.477 \mathrm{LSB}$, peak negative $\mathrm{DNL}=-0.411 \mathrm{LSB}$; Peak positive $\mathrm{INL}=0.508 \mathrm{LSB}$, peak negative $\mathrm{INL}=-0.181 \mathrm{LSB}$.
c. Matlab code is listed below:

```
clear;
y = [1102 810 1005 1106 1504 912 1207 1001 802 905 950 1150
600 1203];
avg = sum(y)/length(y);
dnl = y/avg-1;
inl = cumsum(dnl);
```

d. Histogram test in general does not guarantee monotonicity. Severe ADC flows such as code flipping are not detected in histogram test.

Problem No. $3_{\text {in }}$

1 - $\mathrm{fs} / \mathrm{fx}=\mathrm{N} /$ cycle $=4096 / 211=19.41 \ldots$ Integer number of cycles elliminates the need for windowing since the peroidic nature of the signal is preserved in FFT.
Prime number of cyclesrandomizes the quantization noise and hence better accuracy in the output spectrum.

2- From above FFT, it is obvious that the SFDR of the ADC is 42 dB .
3-The FFT plot only shows fundamental and $3^{\text {rd }}$ harmonic tones. It is therefore plausible to assume that main source of nonlinearity is $3^{\text {rd }}$ distortion:

$$
v_{\text {out }}=a_{1} v_{\text {in }}+a_{3} v_{\text {in }}^{3}
$$

Infinite number of ADC bits is assumed in above transfer characteristic for simple calculation. With a single-tone input,

$$
\begin{aligned}
& v_{\text {in }}=\frac{1}{2} V_{F S} \sin (\omega t) \\
& v_{\text {out }}=a_{1} \frac{V_{F S}}{2} \sin (\omega t)+a_{3} \frac{V_{F S}^{3}}{8} \sin ^{3}(\omega t)=a_{1} \frac{V_{F S}}{2} \sin (\omega t)+a_{3} \frac{V_{F S}^{3}}{8} \frac{3 \sin (\omega t)-\sin (3 \omega t)}{4} \\
& v_{\text {out }}=\left(\frac{a_{1} V_{F S}}{2}+\frac{3 a_{3} V_{F S}^{3}}{32}\right) \sin (\omega t)-\frac{a_{3} V_{F S}^{3}}{32} \sin (3 \omega t)
\end{aligned}
$$

Given that amplitude of the $3^{\text {rd }}$ harmonic is 42 dB below that of fundamental

$$
\begin{aligned}
& \frac{\frac{a_{3} V_{F S}^{3}}{32}}{\frac{a_{1} V_{F S}}{2}+\frac{3 a_{3} V_{F S}^{3}}{32}} \approx \frac{\frac{a_{3} V_{F S}^{3}}{32}}{\frac{a_{1} V_{F S}}{2}}=10^{-\frac{42}{20}} \\
& a_{3}=\frac{a_{1} \times 16 \times 10^{-\frac{42}{20}}}{V_{F S}^{2}}=0.127 \frac{a_{1}}{V_{F S}^{2}}
\end{aligned}
$$

The input-to-output transfer function is then transformed to

$$
v_{\text {out }}=a_{1} v_{\text {in }}+\frac{0.127 a_{1}}{V_{F S}^{2}} v_{\text {in }}^{3}-[1]
$$

End points of above transfer function are

$$
v_{\text {out }}\left(v_{\text {in }}=-\frac{V_{F S}}{2}\right)=-\frac{a_{1} V_{F S}}{2}-\frac{0.127 a_{1} V_{F S}}{8}, v_{\text {out }}\left(v_{\text {in }}=\frac{V_{F S}}{2}\right)=\frac{a_{1} V_{F S}}{2}+\frac{0.127 a_{1} V_{F S}}{8}
$$

The ideal (linearized) transfer function is then

$$
v_{\text {out }}=\frac{v_{\text {out }}\left(\frac{V_{F S}}{2}\right)-v_{\text {out }}\left(-\frac{V_{F S}}{2}\right)}{V_{F S}} v_{\text {in }}^{\prime}=\left(1+\frac{0.127}{4}\right) a_{1} v_{\text {in }}^{\prime}=1.032 a_{1} v_{\text {in }}^{\prime}-[2]
$$

Substituting $\mathrm{v}_{\text {out }}$ in Equation [1] with that in Equation [2],

$$
\begin{aligned}
& 1.032 a_{1} v_{\text {in }}^{\prime}=a_{1} v_{\text {in }}+\frac{0.127 a_{1}}{V_{F S}^{2}} v_{\text {in }}^{3} \\
& I N L=v_{\text {in }}-v_{\text {in }}^{\prime}=v_{\text {in }}-\frac{a_{1} v_{\text {in }}+\frac{0.127 a_{1}}{V_{F S}^{2}} v_{i n}^{3}}{1.032 a_{1}}=\frac{0.032 v_{\text {in }}-\frac{0.127}{V_{F S}^{2}} v_{i n}^{3}}{1.032}
\end{aligned}
$$

To find maximum INL,

$$
\begin{aligned}
& \frac{\partial N L}{\partial \partial_{\text {in }}}=0 \Rightarrow \frac{0.032}{1.032}-\frac{3 \times 0.127 \times v_{i n}^{2}}{1.032 V_{F S}^{2}}=0 \Rightarrow v_{i n, m}= \pm 0.29 V_{F S} \\
& |I N L|_{\max }=\frac{0.032 \times 0.29 V_{F S}-\frac{0.127}{V_{F S}^{2}}\left(0.29 V_{F S}\right)^{3}}{1.032}=0.006 V_{F S}
\end{aligned}
$$

Since the size of LSB is $\frac{V_{F S}}{2^{B}}=\frac{V_{F S}}{2^{9}}$

$$
|I N L|_{\max }=\frac{0.006 V_{F S}}{\frac{V_{F S}}{2^{9}}}=3.1 L S B
$$

$4-\operatorname{SFDR}=20 \log 2^{\wedge} 9 / 3.1=44.3 \mathrm{~dB}$ not too far from 42 dB
5The total quantization noise amplitude of a 9-bit ADC is

$$
\sqrt{\bar{n}_{Q}^{2}}=-(6.02 \times 9+1.76)=-55.94 \mathrm{dBFS}
$$

Given 4096 FFT points, quantization noise floor on the spectrum plot should be

$$
n f_{Q}=\sqrt{\bar{n}_{Q}^{2}}-10 \log _{10}\left(\frac{4096}{2}\right)=-55.94-33.11=-89.05 d B F S
$$

But the actual FFT shows noise floor of about -80 dBFS . The difference is then contributed by circuit noise, which can be assumed uncorrelated with quantization noise:

$$
\bar{n}_{Q}^{2}+\bar{n}_{C}^{2}=-80+33.11=-47 d B F S
$$

where $\bar{n}_{Q}^{2}=10^{\frac{-55.94}{10}}=2.547 \times 10^{-6}$ with respect to full-scale input signal power (0 dBFS). Estimated circuit noise is therefore

$$
\bar{n}_{C}^{2}=1.995 \times 10^{-5}-2.745 \times 10^{-6}=-47.6 \mathrm{dBFS} .
$$

6-If there were no circuit noise (quantization noise only) 47 dB SNR is equivalent to

$$
\frac{S N R-1.76}{6.02}=\frac{47-1.76}{6.02}=7.5 b
$$

Since the actual number of bits is 9 , circuit noise contributes to loss of resolution by 1.5 bit LSB.

7- Finally given that total noise is -47 dBFS , and harmonic distortion of -42dBFS

$$
\begin{aligned}
& S N D R=\frac{1}{10^{-\frac{47}{10}}+10^{-\frac{42}{10}}}=40.8 \mathrm{~dB} \\
& E N O B=\frac{S N D R-1.76}{6.02}=6.5 \mathrm{~b}
\end{aligned}
$$

