EE247 Lecture 15

- D/A converters
- Practical aspects of current-switched DACs (continued)
- Segmented current-switched DACs
- DAC dynamic non-idealities
- DAC design considerations
- Self calibration techniques
- Current copiers
- Dynamic element matching
- DAC reconstruction filter
- A/D converter introduction

Summary Last Lecture

D/A converter architectures:

- Resistor string DAC
-Serial charge redistribution DAC
- Parallel charge scaling DAC
- Combination of resistor string (MSB) \& binary weighted charge scaling (LSB)
-Current source DAC
- Unit element
- Binary weighted
- Static performance
- Component matching-systematic \& random errors
- Component random variations \rightarrow Gaussian pdf
- INL for both unit-element \& binary weight DAC: $\sigma_{I N L}=\sigma_{\varepsilon} \times 2^{32-1}$
- DNL for unit-element: $\sigma_{\text {DNL }}=\sigma_{\varepsilon}$
- DNL for binary-weighted $\sigma_{\mathrm{DNL}}=\sigma_{\varepsilon} \times 2^{8 / 2}$

INL \& DNL for Binary Weighted DAC

- INL same as for unit element DAC
- DNL depends on transition
-Example:

$$
0 \text { to } 1 \rightarrow \sigma_{D N L}^{2}=\sigma_{(d I I I)}{ }^{2}
$$

1 to $2 \rightarrow \sigma_{D N L}{ }^{2}=3 \sigma_{(d I / I)}{ }^{2}$

- Consider MSB transition: 0111 ... $\rightarrow 1000$...

- DNL depends on transition
-Example:
0 to $1 \rightarrow \sigma_{D N L}{ }^{2}=\sigma_{(d \text { dref } / \text { ref })}{ }^{2}$
1 to $2 \rightarrow \sigma_{D N L}{ }^{2}=3 \sigma_{(\text {diref } / \text { ref })}{ }^{2}$
(ave

DAC DNL Example: 4bit DAC

Binary Weighted DAC DNL

- Worst-case transition occurs at mid-scale:

$$
\begin{aligned}
& \sigma_{D N L}^{2}=\underbrace{\left(2^{B-1}-1\right) \sigma_{\varepsilon}^{2}}_{0111 \ldots}+\underbrace{\left(2^{B-1}\right) \sigma_{\varepsilon}^{2}}_{1000 \ldots} \\
& \cong 2^{B} \sigma_{\varepsilon}^{2} \\
& \sigma_{D N L_{\max }}=2^{B / 2} \sigma_{\varepsilon} \\
& \sigma_{I N L_{\max }} \cong \frac{1}{2} \sqrt{2^{B}-1} \sigma_{\varepsilon} \cong \frac{1}{2} \sigma_{D N L_{\max }}
\end{aligned}
$$

- Example:

$$
\begin{aligned}
& \hline \mathrm{B}=12, \sigma_{\varepsilon}=1 \% \\
& \rightarrow \sigma_{\mathrm{DNL}}=0.64 \mathrm{LSB} \\
& \rightarrow \sigma_{\mathrm{INL}}=0.32 \mathrm{LSB}
\end{aligned}
$$

Unit Element versus Binary Weighted DAC Example: $\mathrm{B}=10$

Unit Element DAC

$\sigma_{D N L}=\sigma_{\varepsilon}$
$\sigma_{I N L} \cong 2^{b / 2-1} \sigma_{\varepsilon}=16 \sigma_{\varepsilon}$

Binary Weighted DAC $\sigma_{D N L} \cong 2^{B / 2} \sigma_{\varepsilon}=32 \sigma_{\varepsilon}$
$\sigma_{I N L} \cong 2^{\frac{B}{2}-1} \sigma_{\varepsilon}=16 \sigma_{\varepsilon}$

Number of switched elements:

$$
S=2^{B}=1024
$$

$$
S=B=10
$$

Requires B to ($2^{B}-1$) decoder to address switches
B-bit digital input can be used directly

Significant difference in performance and complexity!

10Bit DAC DNL/INL Comparison

 Plots: RMS for 100 Simulation RunsRef: C. Lin and K. Bult, "A 10-b, 500MSample/s CMOS DAC in $0.6 \mathrm{mm2}$," IEEE
Journal of Solid-State Circuits, vol. 33, pp. 1948 - 1958, December 1998.

Note: $\sigma_{\varepsilon}=2 \%$

 10-bit Input Code

DAC INL/DNL Summary

- DAC choice of architecture has significant impact on DNL
- INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision
-Results assume uncorrelated random element variations
- Systematic errors and correlations are usually also important and may affect final DAC performance

[^0]
Segmented DAC

Combination of Unit-Element \& Binary-Weighted

- Objective:

Compromise between unit-element and binary-weighted DAC

- INL: unaffected same as either architecture
- DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on \rightarrow Same as binary weighted DAC with $\left(B_{2}+1\right)$ \# of bits
- Number of switched elements: $\left(2^{\mathrm{B1}}-1\right)+\mathrm{B}_{2}$

Comparison

Example:

$$
\begin{aligned}
& B=12, \underbrace{B_{1}=5,}_{\mathrm{MSB}} \begin{array}{l}
B_{\mathrm{LSB}}=7
\end{array} \\
& \begin{array}{l}
B_{1}=6, \\
\sigma_{D N L} \cong 2^{(B 2+1) / 2} \sigma_{\varepsilon}=2 \sigma_{I N L} \\
\sigma_{I N L} \cong 2^{B / 2-1} \sigma_{\varepsilon}
\end{array} \\
& S=2^{B 1}-1+B_{2}
\end{aligned}
$$

DAC Architecture $(B 1+B 2)$		$\sigma_{\text {INLLLSB] }}$	$\sigma_{\text {DNLLLSB }}$ $]$	\# of switched elements
Unit element	$(12+0)$	0.32	0.01	4095
Segmented	$(6+6)$	0.32	0.113	$63+6=69$
Segmented	$(5+7)$	0.32	0.16	$31+7=38$
Binary weighted(0+12)	0.32	0.64	12	

Practical Aspects Current-Switched DACs

- Unit element DACs ensure monotonicity by turning on equal-weighted current sources in succession
- Typically current switching performed by differential pairs
- For each diff pair, only one of the devices are on \rightarrow switch device mismatch not an issue
- Issue: While binary weighted DAC can use the incoming binary digital word directly, unit element requires a decoder

Segmented Current-Switched DAC Example: 8bit $\rightarrow 4 \mathrm{MSB}+4 \mathrm{LSB}$

- 4-bit MSB Unit element DAC + 4-bit binary weighted DAC
- Note: 4-bit MSB

Segmented Current-Switched DAC Cont'd

- 4-bit MSB Unit element DAC + 4bit binary weighted DAC
- Note: 4-bit MSB

DAC requires extra
4-to-16 bit decoder

- Digital code for both DACs stored in a register

Segmented Current-Switched DAC Cont'd

- MSB Decoder
\rightarrow Domino logic
\rightarrow Example: D4,5,6,7=1 OUT=1

Domino Logic

Register

Segmented Current-Switched DAC Reference Current Considerations

- $\mathrm{I}_{\text {ref }}$ is referenced to $V_{D D}$
\rightarrow Problem:
Reference current varies with supply voltage

$$
I_{r e f}=\left(V_{D D}-V_{r e f}\right) / R
$$

Segmented Current-Switched DAC Reference Current Considerations

- $I_{r e f}$ is
referenced to
$V_{s s} \rightarrow$ GND

DAC Dynamic Non-Idealities

- Finite settling time
- Linear settling issues: (e.g. RC time constants)
- Slew limited settling
- Spurious signal coupling
- Coupling of clock/control signals to the output via switches \& switch charge injection
- Timing error related glitches
- Control signal timing skew

Dynamic DAC Error: Timing Glitch

- Consider binary weighted DAC transition $011 \rightarrow 100$
- DAC output depends on timing
- Plot shows situation where the control signals for LSB \& MSB
- LSB/MSBs on time
- LSB early, MSB late
- LSB late, MSB early

Glitch Energy

- Glitch energy (worst case) proportional to: dt $x 2^{B-1}$
- $d t \rightarrow$ error in timing \& 2^{B-1} associated with half of the switches changing state
- LSB energy proportional to: $T=1 / f_{s}$
- Need $d t x 2^{B-1} \ll T$ or $d t \ll 2^{-B+1} T$
- Examples:

$f_{s}[\mathrm{MHz}]$	B	$d t[\mathrm{ps}]$
1	12	$\ll 488$
20	16	$\ll 1.5$
1000	12	$\ll 0.5$

\rightarrow Timing accuracy for logic circuitry associated with data converters much more critical compared to digital circuitry e.g. DSP

DAC Dynamic Errors

- To suppress effect of non-idealities:
- Retiming of current source control signals
- Each current source has its own clocked latch incorporated in the current cell
- Minimization of latch clock skew by careful layout ensuring simultaneous change of bits
- To minimize control and clock feed through to the output via G-D \& G-S of the switches
- Use of low-swing digital circuitry

DAC Implementation Examples

- Untrimmed segmented
- T. Miki et al, "An 80-MHz 8-bit CMOS D/A Converter," JSSC December 1986, pp. 983
- A. Van den Bosch et al, "A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter," JSSC March 2001, pp. 315
- Current copiers:
- D. W. J. Groeneveld et al, "A Self-Calibration Technique for Monolithic High-Resolution D/A Converters," JSSC December 1989, pp. 1517
- Dynamic element matching:
- R. J. van de Plassche, "Dynamic Element Matching for HighAccuracy Monolithic D/A Converters," JSSC December 1976, pp. 795

An $80-\mathrm{MHz} 8$-bit CMOS D/A Converter

TAKAHIRO MIKI, YASUYUKI NAKAMURA. MASAO NAKAYA, SOTOJU ASAI, YOICHI AKASAKA, AND YASUTAKA HORIBA

Fig. 1. Basic architecture of the DAC.

Two sources of systematic error:

- Finite current source output resistance
- Voltage drop due to finite ground bus resistance

1	2	3	4	5	6	7
SEQUENTIAL SWITCHING						

Fig. 9. Symmetrical switching.

Current-Switched DACs in CMOS

Assumptions:
RxI small compared to transistor gate-overdrive
To simplify analysis: Initially, all device currents assumed to be equal to I
$V_{G S_{M 2}}=V_{G S_{M 1}}-4 R I$
$V_{G S_{M 3}}=V_{G S_{M 1}}-7 R I$
$V_{G S_{M 4}}=V_{G S_{M I}}-9 R I$
$V_{G S_{M 5}}=V_{G S_{M I}}-10 R I$
$I_{2}=k\left(V_{G S_{M 2}}-V_{t h}\right)^{2}$
$I_{2}=I_{I}\left(1-\frac{4 R I}{V_{G S_{M I}}-V_{t h}}\right)^{2}$

Example: 5 unit element current sources

Current-Switched DACs in CMOS

$I_{2}=k\left(V_{G S_{M 2}}-V_{\text {th }}\right)^{2}=I_{1}\left(1-\frac{4 R I}{V_{G S_{M 1}}-V_{\text {th }}}\right)^{2}$
$g_{m_{M 1}}=\frac{2 I_{l}}{V_{G S_{M 1}}-V_{\text {th }}}$
$\rightarrow I_{2}=I_{I}\left(1-\frac{4 R g_{m_{M 1}}}{2}\right)^{2} \approx I_{l}\left(1-4 R g_{m_{M 1}}\right)$
$\rightarrow I_{3}=I_{I}\left(1-\frac{7 R g_{m_{M I}}}{2}\right)^{2} \approx I_{l}\left(1-7 R g_{m_{M 1}}\right)$
$\rightarrow I_{4}=I_{1}\left(1-\frac{9 R g_{m_{M I}}}{2}\right)^{2} \approx I_{l}\left(1-9 R g_{m_{M I}}\right)$
$\rightarrow I_{5}=I_{l}\left(1-\frac{10 R g_{m_{M 1}}}{2}\right)^{2} \approx I_{l}\left(1-10 R g_{m_{M 1}}\right)$
\rightarrow Desirable to have g_{m} small

Two sources of systematic error:

- Finite current source output resistance
- Voltage drop due to finite ground bus resistance

\[

\]

SYMMETRICAL SWITCHING

Fig. 9. Symmetrical switching.

Example: 7 unit element current source DAC- assume $g_{m} R=1 / 100$
-If switching of current sources arranged sequentially (1-2-3-4-5-6-7) $\rightarrow I N L=+0.25 L S B$
-If switching of current sources symmetrical (4-3-5-2-6-1-7) \rightarrow INL $=+0.09,-0.058 L S B \rightarrow I N L$ reduced by a factor of 2.6
This technique is also effective in compensating for systematic errors associated with process gradients.

Example: 7 unit element current source DAC- assume $g_{m} R=1 / 100$

- If switching of current sources arranged sequentially (1-2-3-4-5-6-7)
$\rightarrow D N L_{\text {max }}=+0.15 L S B$
- If switching of current sources symmetrical (4-3-5-2-6-1-7)
$\rightarrow D N L_{\max }=+0.15 L S B \rightarrow D N L_{\max }$ unchanged

A 10-bit 1-GSample/s Nyquist Current-Steering (5+5) CMOS D/A Converter

Anne Van den Bosch, Student Member; IEEE, Marc A. F. Borremans, Student Member; IEEE, Michel S. J. Steyaert, Senior Member; IEEE, and Willy Sansen, Fellow; IEEE

More recent published DAC using symmetrical switching built in $0.35 \mu / 3 \mathrm{~V}$ analog/1.9V digital, area $\mathbf{x} 10$ smaller compared to previous example

A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter

Anne Van den Bosch, Student Member, IEEE, Marc A. F. Borremans, Student Member; IEEE, Michel S. J. Steyaert, Senior Member; IEEE, and Willy Sansen, Fellow; IEEE

- Layout of Current sources -each current source made of 4 devices in parallel each located in one of the 4 quadrants
- Thermometer decoder used to convert incoming binary digital control for the 5 MSB bits
- Dummy decoder used on the LSB side to match the latency due to the MSB decoder

A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter

Anne Van den Bosch, Student Member; IEEE, Marc A. F. Borremans, Student Member, IEEE, Michel S. J. Steyaert, Senior Member; IEEE and Willv Sansen. Fellow: IEEE

- Current source layout
- MSB current sources layout in the mid sections of the four quad
- LSB current sources mostly in the periphery
- Two rows of dummy current sources added @ the periphery to create identical environment for devices in the center versus the ones on the outer sections

A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter

Anne Van den Bosch, Student Member; IEEE, Marc A. F. Borremans, Student Member, IEEE, Michel S. J. Steyaert, Senior Member; IEEE, and Willy Sansen, Fellow; IEEE

LATCH

- Note that each current cell has its clocked latch and clock signal laid out to be close to its switch to ensure simultaneous switching of current sources
- Special attention paid to the final latch to have the cross point of the complementary switch control signal such that the two switches are not both turned off during transition

A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter

Anne Van den Bosch, Student Member; IEEE, Marc A. F. Borremans, Student Member; IEEE, Michel S. J. Steyaert, Senior Member; IEEE, and Willy Sansen, Fellow; IEEE

- Measured DNL/INL with current associated with the current cells as variable

A Self-Calibration Technique for Monolithic High-Resolution D/A Converters

D. WOUTER J. GROENEVELD, HANS J. SCHOUWENAARS, SENIOR MEMBER, IEEE, HENK A. H. TERMEER, AND CORNELIS A. A. BASTIAANSEN

Called:
Current Copier

(a)

(b)

Fig. 2. Calibration principle. (a) Calibration. (b) Operation.

Current Divider Inaccuracy due to Device Mismatch

M1 \& M2 mismatch results in the two output currents not being exactly equal:

$$
I_{d}=\frac{I_{d 1}+I_{d 2}}{2}
$$

$\frac{d I_{d}}{I_{d}}=\frac{I_{d 1}-I_{d 2}}{I_{d}}$ Ideal Current Divider

Real Current Divider M1\& M2 mismatched
$\frac{d I_{d}}{I_{d}}=\frac{2}{V_{G S}-V_{t h}} \times\left[\left(\frac{d^{W} / L}{W / L}\right)+d V_{t h}\right]$
\rightarrow Problem: Device mismatch could severely limit DAC accuracy
\rightarrow Use of dynamic element matching (next few pages)

Dynamic Element Matching for High-Accuracy Monolithic D/A Converters

- Idea is:
- Even though the two outputs of the diff pair divider may not be exactly equal (due to device mismatch)
- The sum of the two currents stays constant
\rightarrow By using switching tie both outputs to sum of the two

RUDY J. VAN DE PLASSCHE

(a)

(b)

Fig. 2. (a) New current divider schematic diagram. (b) Time dependence
of various currents in the new divider

Dynamic Element Matching

Average of I_{2} :
$\left\langle I_{2}\right\rangle=\frac{I_{2}^{(1)}+I_{2}^{(2)}}{2}$

$$
=\frac{I_{o}}{2} \frac{\left(1-\Delta_{l}\right)+\left(1+\Delta_{l}\right)}{2}
$$

$$
\approx \frac{I_{0}}{2}
$$

Note: DAC frequency of operation $<f_{c l k} \quad \approx \frac{I_{o}}{2}$

Dynamic Element Matching

Note:
For optimum current division accuracy \rightarrow clock frequency is divided by two for each finer division Problem: DAC frequency of operation drastically reduced

(a)

(b)

Fig. 4. (a) Binary weighted current network using different switching frequencies. (b) Time dependence of currents flowing in the first and second divider stage.

Note: What if the same clock frequency is used?

Dynamic Element Matching

$$
\begin{aligned}
& \text { During } \Phi_{1} \\
& I_{1}^{(1)}=\frac{1}{2} I_{o}\left(1+\Delta_{1}\right) \\
& \text { During } \Phi_{2} \\
& I_{2}^{(1)}=\frac{1}{2} I_{o}\left(1-\Delta_{1}\right) \\
& I_{1}^{(2)}=\frac{1}{2} I_{o}\left(1-\Delta_{1}\right) \\
& I_{2}^{(2)}=\frac{1}{2} I_{o}\left(1+\Delta_{1}\right) \\
& I_{3}^{(1)}=\frac{1}{2} I_{1}^{(1)}\left(1+\Delta_{2}\right) \\
& I_{3}^{(2)}=\frac{1}{2} I_{1}^{(2)}\left(1-\Delta_{2}\right) \\
& =\frac{1}{4} I_{o}\left(1+\Delta_{1}\right)\left(1+\Delta_{2}\right) \\
& =\frac{1}{4} I_{o}\left(1-\Delta_{1}\right)\left(1-\Delta_{2}\right) \\
& \left\langle I_{3}\right\rangle=\frac{I_{3}^{(1)}+I_{3}^{(2)}}{2} \\
& =\frac{I_{o}}{4} \frac{\left(1+\Delta_{1}\right)\left(1+\Delta_{2}\right)+\left(1-\Delta_{1}\right)\left(1-\Delta_{2}\right)}{2} \\
& =\frac{I_{o}}{4}\left(1+\Delta_{1} \Delta_{2}\right) \\
& \text { E.g. } \Delta_{1}=\Delta_{2}=1 \% \rightarrow \text { matching error is }(1 \%)^{2}=0.01 \%
\end{aligned}
$$

Dynamic Element Matching for High-Accuracy Monolithic D/A Converters

RUDY J. VAN DE PLASSCHE

- Bipolar 12-bit DAC using dynamic element matching built in 1976
- Element matching clock frequency 100 kHz
- INL < 0.25LSB!

12-Bit D/A Test Chip

D/A NETWORK DATA	
Resolution:	12 bit
Accuracy:	$\underset{\text { (linearity) }}{\$ 1 / 40^{5}}$
Output current :	2 mA
Temp. Coeff: of output current:	$5 \mathrm{pmm} /{ }^{\circ} \mathrm{C}$
Voltage Coeff. of output current:	$1 \mathrm{ppm} / \mathrm{V}$
Chip size :	$2.5 \times 2.5 \mathrm{~mm}$
Max. clock freq. for dynamic matching:	100 kHz
Power supply :	-15V

ISSCC 2004 / SESSION 20 / DIGITAL-TO-ANALOG CONVERTERS / 20.1
20.1 A 3V CMOS 400mW 14b 1.4GS/s DAC for Multi-Carrier Applications

Bernd Schafferer and Richard Adams			
Example: State-of-the-Art current steering DAC	Max Sample Frequency	1.4	GSPS
	Resolution	14	Bit
	DNL	+/-0.8	LSB
	INL	+/-2.1	LSB
Segmented: 6bit unit-element 8bit binary	SFDR @ 1.0 GSPS	> 60	dB
	IMD @ 1.0 GSPS	> 64	dBc
	NSD @ fout $=400 \mathrm{MHz}$	-155	$\mathrm{dBm} / \mathrm{Hz}$
	Power (Core) @1.4GSPS	200	mW
	Power(Total) @ 1.4GSPS	400	mW
	Area (Core)	0.8	mm ${ }^{2}$
	Area (Chip)	6.25	mm^{2}

ISSCC 2004 / SESSION 20 / DIGITAL-TO-ANALOG CONVERTERS / 20.1
20.1 A 3V CMOS 400mW 14b 1.4GS/s DAC for Multi-Carrier Applications

Layout Tree Structures

DAC In the Big Picture

- Learned to build DACs
- Convert the incoming digital signal to analog
- DAC output \rightarrow staircase form
- Some applications require filtering (smoothing) of DAC output
\rightarrow Reconstruction filter

DAC Reconstruction Filter

- Output of DAC:
- Frequency domain: DAC input spectrum shaped by S / H sinc function

- Time domain: Staircase shaped waveform
- Tasks:
- Correct for sinc droop if needed
- Remove "aliases" (stair-case approximation)
\rightarrow Reconstruction filter: Need and requirements depend on application

Reconstruction Filter Options

- Reconstruction filter options:
- Continuous-time filter only
- CT + SC filter
- SC filter possible only in combination with oversampling (signal bandwidth $B \ll f_{s} / 2$)
- Digital filter
- Band limits the input signal \rightarrow prevent aliasing
- Could also provide high-frequency pre-emphasis to compensate inband $\sin x / x$ amplitude droop associated with the inherent DAC S/H function

DAC Reconstruction Filter Example: Voice-Band CODEC Receive Path

Note: $f_{\text {sig }}{ }^{\max }=3.4 \mathrm{kHz}$
$f_{s}^{D A C}=8 \mathrm{kHz}$
$\rightarrow \sin \left(\pi f_{\text {sig }}{ }^{\max } x T_{s}\right) /\left(\pi f_{\text {sig }}{ }^{\max } x T_{s}\right)$

$$
=-2.75 d B \text { droop due to } D A C \sin x / x \text { shape }
$$

Ref: D. Senderowicz et. al, "A Family of Differential NMOS Analog Circuits for PCM Codec Filter Chip," IEEE Journal of Solid-State Circuits, Vol.-SC-17, No. 6, pp.1014-1023, Dec. 1982.

Summary D/A Converter

- D/A architecture
- Unit element - complexity proportional to $2^{\text {B- }}$ excellent DNL
- Binary weighted- complexity proportional to B- poor DNL
- Segmented- unit element MSB $\left(B_{1}\right)+$ binary weighted $\operatorname{LSB}\left(B_{2}\right)$ \rightarrow Complexity proportional ($\left.\left(2^{B 1}-1\right)+\mathrm{B}_{2}\right)$-DNL compromise between the two
- Static performance
- Component matching
- Dynamic performance
- Time constants, Glitches
- DAC improvement techniques
- Symmetrical switching rather than sequential switching
- Current source self calibration
- Dynamic element matching
- Depending on the application, reconstruction filter may be needed

What Next?

- ADC Converters:
- Need to build circuits that "sample"
- Need to build circuits for amplitude quantization

Anti-Aliasing Filter
...001...
110
"Bits to Staircase"

Analog-to-Digital Converters

-Two categories:

- Nyquist rate ADCs $\rightarrow f_{\text {sig }}{ }^{\text {max }} \sim 0.5 x f_{\text {sampling }}$
- Maximum achievable signal bandwidth higher compared to oversampled type
- Resolution limited to max. 14bits
- Oversampled ADCs $\rightarrow f_{\text {sig }}{ }^{\text {max }} \ll 0.5 x f_{\text {sampling }}$
- Maximum achievable signal bandwidth significantly lower compared to nyquist
- Maximum achievable resolution high (18 to 20bits!)

MOS Sampling Circuits

Ideal Sampling

- In an ideal world, zero resistance sampling switches would close for the briefest instant to sample a continuous voltage v_{IN} onto the capacitor C
\rightarrow Output Dirac-like pulses with amplitude equal to V_{IN} at the time of sampling

In practice not realizable!

Ideal Track \& Hold Sampling

- $\mathrm{V}_{\text {out }}$ tracks input for $1 / 2$ clock cycle when switch is closed
- Ideally acquires exact value of $\mathrm{V}_{\text {in }}$ at the instant the switch opens
- "Track and Hold" (T/H) (often called Sample \& Hold!)

Ideal T/H Sampling

Practical Sampling Issues

- Switch induced noise due to M1 finite channel resistance
- Clock jitter
- Finite $R_{s w} \rightarrow$ limited bandwidth \rightarrow finite acquisition time
- $R_{s w}=f\left(V_{i n}\right) \rightarrow$ distortion
- Switch charge injection \& clock feedthrough

- Switch resistance \& sampling capacitor form a low-pass filter
- Noise associated with the switch resistance results in \rightarrow Total noise variance= kT / C @ the output (see noise analysis in Lecture 1)
- In high resolution ADCs kT/C noise at times dominates overall minimum signal handling capability (power dissipation considerations).

Sampling Network kT/C Noise

For ADCs sampling capacitor size is usually chosen based on having thermal noise smaller or equal or at times larger compared to quantization noise:
Assumption: \rightarrow Nyquist rate ADC
For a Nyquist rate ADC : Total quantizati on noise power $\approx \frac{\Delta^{2}}{12}$
Choose C such that thermal noise level is less (or equal) than Q noise
$\frac{k_{B} T}{C} \leq \frac{\Delta^{2}}{12}$
$\rightarrow \quad C \geq 12 k_{B} T\left(\frac{2^{B}-1}{V_{F S}}\right)^{2}$
$\rightarrow \quad C \geq 12 k_{B} T \times \frac{2^{2 B}}{V_{F S}^{2}}$

Sampling Network kT/C Noise

$$
C \geq 12 k_{B} T \frac{2^{2 B}}{V_{F S}{ }^{2}}
$$

Required $\mathbf{C}_{\text {min }}$ as a Function of ADC Resolution		
B	$\mathrm{C}_{\min }\left(\mathrm{V}_{\mathrm{FS}}=1 \mathrm{~V}\right)$	$\mathrm{C}_{\text {min }}\left(\mathrm{V}_{\mathrm{FS}}=0.5 \mathrm{~V}\right)$
8	0.003 pF	0.012 pF
12	0.8 pF	2.4 pF
14	13 pF	52 pF
16	206 pF	824 pF
20	$52,800 \mathrm{pF}$	$211,200 \mathrm{pF}$

The large area required for $\mathrm{C} \rightarrow$ limit highest achievable resolution for Nyquist rate ADCs
Oversampling results in reduction of required value for C (will be covered in oversampled converter lectures)

Clock Jitter

- So far : clock signal controls sampling instants which we assumed to be precisely equi-distant in time (period T)
- Real clock generator \rightarrow some level of variability
- Variability in T causes errors
- "Aperture Uncertainty" or "Aperture Jitter"
- What is the effect of clock jitter on ADC performance?

Clock Jitter

- Sampling jitter adds an error voltage proportional to the product of $\left(\mathrm{t}_{\mathrm{J}}-\mathrm{t}_{0}\right)$ and the derivative of the input signal at the sampling instant

Clock Jitter

- The error voltage is

$$
e=x^{\prime}\left(t_{0}\right)\left(t_{J}-t_{0}\right)
$$

- Does jitter matter when sampling dc signals $\left(x^{\prime}\left(t_{0}\right)=0\right)$?

Effect of Clock Jitter on Sampling of a Sinusoidal Signal

Sinusoidal input
Amplitude:
Frequency: Jitter:
$x(t)=A \sin \left(2 \pi f_{x} t\right)$
$x^{\prime}(t)=2 \pi f_{x} A \cos \left(2 \pi f_{x} t\right)$
$\left|x^{\prime}(t)\right|_{\max } \leq 2 \pi f_{x} A$
Requirement:
$|e(t)| \leq\left|x^{\prime}(t)\right|_{\text {max }} d t$
$|e(t)| \leq 2 \pi f_{x} A d t$

Worst case

$$
A=A_{F S} / 2 \quad f_{x}=f_{s} / 2
$$

$$
|e(t)| \ll \frac{\Delta}{2} \cong \frac{A_{F S}}{2^{B+1}}
$$

$$
d t \ll \frac{1}{2^{B} \pi f_{s}}
$$

\# of Bits	f_{s}	$d t \ll$
12	1 MHz	78 ps
16	20 MHz	0.24 ps
12	1000 MHz	0.07 ps

Statistical Jitter Analysis

- The worst case looks pretty stringent ... what about the "average"?
- Let's calculate the mean squared jitter error (variance)
- If we're sampling a sinusoidal signal

$$
x(t)=A \sin \left(2 \pi f_{x} t\right),
$$

then
$-x^{\prime}(t)=2 \pi f_{x} A \cos \left(2 \pi f_{x} t\right)$
$-\mathrm{E}\left\{\left[\mathrm{x}^{\prime}(\mathrm{t})\right]^{2}\right\}=2 \pi^{2} \mathrm{f}_{\mathrm{x}}{ }^{2} \mathrm{~A}^{2}$

- Assume the jitter has variance $\mathrm{E}\left\{\left(\mathrm{t}_{\mathrm{J}}-\mathrm{t}_{0}\right)^{2}\right\}=\tau^{2}$

Statistical Jitter Analysis

- If $\mathrm{x}^{\prime}(\mathrm{t})$ and the jitter are independent $-E\left\{\left[x^{\prime}(t)\left(t_{j}-t_{0}\right)\right]^{2}\right\}=E\left\{\left[x^{\prime}(t)\right]^{2}\right\} E\left\{\left(t_{j}-t_{0}\right)^{2}\right\}$
- Hence, the jitter error power is

$$
E\left\{e^{2}\right\}=2 \pi^{2} f_{x}^{2} A^{2} \tau^{2}
$$

- If the jitter is uncorrelated from sample to sample, this "jitter noise" is white

Statistical Jitter Analysis

$$
\begin{aligned}
D R_{\text {jitter }} & =\frac{A^{2} / 2}{2 \pi^{2} f_{x}^{2} A^{2} \tau^{2}} \\
& =\frac{1}{2 \pi^{2} f_{x}^{2} \tau^{2}} \\
& =-20 \log _{10}\left(2 \pi f_{x} \tau\right)
\end{aligned}
$$

SNR DUE TO APERTURE AND SAMPLING CLOCK JITTER

Example: ADC Spectral Tests

$$
- \text { SFDR }(d B) \rightarrow T H D(-d B) \rightarrow \text { SNR }(d B)
$$

Ref: W. Yang et al., "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input," IEEE J. of Solid-State Circuits, Dec. 2001

More on Jitter

- In cases where clock signal is provided from off-chip \rightarrow have to choose a clock signal source with low enough jitter
- On-chip precautions to keep the clock jitter less than single-digit pico-second:
- Separate supplies as much as possible
- Separate analog and digital clocks
- Short inverter chains between clock source and destination
- Few, if any, other analog-to-digital conversion non-idealities have the same symptoms as sampling jitter:
- RMS noise proportional to input signal frequency
- RMS noise proportional to input signal amplitude
\rightarrow In cases where clock jitter limits the dynamic range, it's easy to tell, but may be difficult to fix...

[^0]: Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

