EE247 Lecture 17

- Administrative issues

- Midterm exam postponed to Thurs. Oct. 28th
o You can only bring one 8×11 paper with your own written notes (please do not photocopy)
o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones....
o Midterm includes material covered to end of lecture 14

EE247

Lecture 17

ADC Converters

- Sampling (continued)
- Sampling switch considerations
- Clock voltage boosters
- Sampling switch charge injection \& clock feedthrough
- Complementary switch
- Use of dummy device
- Bottom-plate switching
- Track \& hold
- T/H circuits
- T/H combined with summing/difference function
- T/H circuit incorporating gain \& offset cancellation
- T/H aperture uncertainty

Practical Sampling
 Summary So Far!

- $k T / C$ noise

$$
C \geq 12 k_{B} T \frac{2^{2 B}}{V_{F S}^{2}}
$$

- Finite $R_{s w} \rightarrow$ limited bandwidth

$$
R \ll \frac{0.72}{B f_{s} C}
$$

- $g_{s w}=f\left(V_{i n}\right) \rightarrow$ distortion

$$
g_{O N}=g_{o}\left(1-\frac{V_{i n}}{V_{D D}-V_{t h}}\right) \text { for } g_{o}=\mu C_{o x} \frac{W}{L}\left(V_{D D}-V_{t h}\right)
$$

- Allowing long enough settling time \rightarrow reduce distortion due to switch non-linear behavior

Constant V_{GS} Sampling Circuit

Ref: A. Abo et al, "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter," JSSC May 1999, pp. 599.

Clock Voltage Doubler

Constant V_{GS} Sampler: Φ Low

Constant V_{GS} Sampler: Φ High

Constant V_{GS} Sampling

Constant V_{GS} Sampling?

Constant V_{GS} Sampling?

- During the time period:
$V_{\text {in }}<V_{\text {out }}$
$\rightarrow \mathrm{V}_{\mathrm{GS}}=$ constant $=\mathrm{V}_{\mathrm{DD}}$
- Larger $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\text {th }}$ compared to no boost
$-\mathrm{V}_{\mathrm{GS}}=\mathrm{cte}$ and not a function of input voltage
\rightarrow Significant linearity improvement

- During the time period:
$\mathrm{V}_{\text {in }}>\mathrm{V}_{\text {out }}$:
$\rightarrow \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{IR}$
- Larger $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\text {th }}$ compared to no boost
- $V_{G S}$ is a function of IR and hence input voltage
\rightarrow Linearity improvement not as pronounced as for $\mathrm{V}_{\text {in }}<\mathrm{V}_{\text {out }}$

Boosted Clock Sampling Design Considerations

Choice of value for C3:

- C3 too large \rightarrow large charging current \rightarrow large dynamic power dissipation
- C3 too small \rightarrow $(\text { Vgate-Vs) })_{\mathrm{M} 11}=$ VDD.C3/(C3+Cx) \rightarrow Loss of $\mathrm{VGS}_{\mathrm{M} 11}$ due to low ratio of $\mathrm{C} 3 / \mathrm{Cx}$

Cx includes C_{GS} of M11 plus all other parasitics caps....

Ref: A. Abo et al, "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter," JSSC May 1999, pp. 599.

Boosted Clock Sampling Design Considerations

- Reliability issues:
- Avoid having any of the G-S and G-D, and D-S terminal voltages for ALL circuit devices exceed the maximum $V_{D D}$ prescribed by the SI processing firm.
- In particular, the thin MOS device gate oxide could gradually sustain damage through getting exposed to higher than prescribed voltage.

Boosted Clock Sampling Complete Circuit

Ref: A. Abo et al, "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter," JSSC May 1999, pp. 599.

Advanced Clock Boosting Technique

Switch
Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IFsampling frontend,"
ISSCC 2002, Dig.
Tech. Papers, pp. 314

Two floating voltages sources generated and connected to Gate and S \& D

Advanced Clock Boosting Technique

- clk \rightarrow low
- Capacitors C1a \& C1b \rightarrow charged to VDD
- MS \rightarrow off
- Hold mode

Advanced Clock Boosting Technique

- clk \rightarrow high
- Top plate of C1a \& C1b connected to gate of sampling switch
- Bottom plate of C1a connected to $\mathrm{V}_{\text {IN }}$
- Bottom plate of C 1 b connected to $\mathrm{V}_{\text {out }}$
- VGS \& VGD of sampling switch (MS) both @ VDD \& ac signal on G of MS \rightarrow average of $\mathrm{V}_{\text {IN }} \& \mathrm{~V}_{\text {OUT }}$

Advanced Clock Boosting Technique

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IFsampling frontend," ISSCC 2002, Dig.
Tech. Papers, pp. 314

- Gate tracks average of input and output, reduces effect of I•R drop at high frequencies
- Bulk also tracks signal \Rightarrow reduced body effect (technology used allows connecting bulk to S)
- Reported measured SFDR $=76.5 \mathrm{~dB}$ at $\mathrm{f}_{\mathrm{in}}=200 \mathrm{MHz}$

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6 um CMOS with over $80-\mathrm{dB}$ SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6 um CMOS with over $80-\mathrm{dB}$ SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

Constant Conductance Switch

M2 \rightarrow Constant current
M1 \rightarrow replica of M2
\& same VGS
as M2
\rightarrow M1 also
constant current

- Note: Authors report requirement of 280 MHz GBW for the opamp for 12 bit 50Ms/s ADC
- Also, opamp common-mode compliance for full input range required

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6 um CMOS with over $80-\mathrm{dB}$ SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

Switch Off-Mode Feedthrough Cancellation

High-pass feedthrough paths past an open switch

Feedthrough cancellation with a dummy switch

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200 MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314

Practical Sampling Issues

- Switch induced noise due to M1 finite channel resistance
- Clock jitter
- Finite $R_{s w} \rightarrow$ limited bandwidth \rightarrow finite acquisition time
- $R_{s w}=f\left(V_{i n}\right) \rightarrow$ distortion
\longrightarrow • Switch charge injection \& clock feedthrough

Sampling Switch Charge Injection \& Clock Feedthrough Switching from Track to Hold

- First assume V_{i} is a DC voltage
- When switch turns off \rightarrow unwanted offset voltage induced on C_{s}
- Why?

Sampling
 Switch Charge Injection

MOS xtor operating in triode region Cross section view

Distributed channel resistance \& gate \& junction capacitances

- Channel \rightarrow distributed RC network formed between G, S, and D
- Channel to substrate junction capacitance \rightarrow distributed \& voltage dependant
- Drain/Source junction capacitors to substrate \rightarrow voltage dependant
- Over-lap capacitance $C_{o v}=L_{D} . W \cdot C_{o x}$ associated with G-S \& G-D overlap

Switch Charge Injection Slow Clock

- Slow clock \rightarrow clock fall time >> device speed
\rightarrow During the period (t - to $t_{o f f}$) current in channel discharges channel charge into low impedance signal source
- Only source of error \rightarrow Clock feedthrough from $C_{o v}$ to C_{s}

Switch Clock Feedthrough

 Slow Clock$\approx-\frac{C_{o v}}{C_{s}}\left(V_{i}+V_{t h}-V_{L}\right)$
$V_{o}=V_{i}+\Delta V$
$V_{o}=V_{i}-\frac{C_{o v}}{C_{s}}\left(V_{i}+V_{t h}-V_{L}\right)=V_{i}\left(1-\frac{C_{o v}}{C_{s}}\right)-\frac{C_{o v}}{C_{s}}\left(V_{t h}-V_{L}\right)$
$V_{o}=V_{i}(1+\varepsilon)+V_{o s}$
where $\varepsilon=-\frac{C_{o v}}{C_{s}} ; V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{t h}-V_{L}\right)$

Switch Charge Injection \& Clock Feedthrough Slow Clock- Example

$C_{o v}^{\prime}=0.1 f F / \mu \quad C_{o x}=9 f F / \mu^{2} \quad V_{t h}=0.4 V \quad V_{L}=0 \quad V_{i}$
$\varepsilon=-\frac{C_{o v}}{C_{s}}=-\frac{10 \mu x 0.1 \mathrm{fF} / \mu}{1 p F}=-.1 \%$
Allowing $\varepsilon=1 / 2 L S B \rightarrow$ ADC resolution $<\sim 9 b i t$

$V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{t h}-V_{L}\right)=-0.4 m \mathrm{~V}$

Switch Charge Injection \& Clock Feedthrough Fast Clock

- Sudden gate voltage drop \rightarrow no gate voltage to establish current in channel \rightarrow channel charge has no choice but to escape out towards S \& D

Switch Charge Injection \& Clock Feedthrough Fast Clock

Clock Fall-Time << Device Speed:

$$
\begin{aligned}
& \Delta V_{o}=-\frac{C_{o v}}{C_{o v}+C_{s}}\left(V_{H}-V_{L}\right)-\left(\frac{1}{2}\right) \times \frac{Q_{c h}}{C_{s}} \\
& \approx-\frac{C_{o v}}{C_{o v}+C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(\left(V_{H}-V_{i}-V_{t h}\right)\right)}{C_{s}} \\
& V_{o}=V_{i}(1+\varepsilon)+V_{o s} \\
& \text { where } \varepsilon=\frac{1}{2} \times \frac{W C_{o x} L}{C_{s}} \\
& V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(V_{H}-V_{t h}\right)}{C_{s}}
\end{aligned}
$$

- For simplicity it is assumed channel charge divided equally between S \& D
- Source of error \rightarrow channel charge transfer + clock feedthrough via $C_{o v}$ to C_{s}

Switch Charge Injection \& Clock Feedthrough Fast Clock- Example

$C_{o v}=0.1 \frac{f F}{\mu}, C_{o x}=9 \frac{f F}{\mu^{2}}, V_{t h}=0.4 \mathrm{~V}, V_{D D}=1.8 \mathrm{~V}, V_{L}=0$
$\varepsilon=1 / 2 \frac{W L C_{o x}}{C_{s}}=\frac{10 \mu x 0.18 \mu x 9 \mathrm{fF} / \mu^{2}}{1 p F}=1.6 \% \rightarrow \sim 5-$ bit

$V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(V_{H}-V_{t h}\right)}{C_{s}}=-1.8 \mathrm{mV}-14.6 \mathrm{mV}=-16.4 \mathrm{mV}$

Switch Charge Injection \& Clock Feedthrough Example-Summary

Error function of:
\rightarrow Clock fall time
\rightarrow Input voltage level
\rightarrow Source impedance
\rightarrow Sampling capacitance size
\rightarrow Switch size
8- Clock fall/rise should be controlled not to be faster (sharper) than necessary

Switch Charge Injection

Error Reduction

- How do we reduce the error?
\rightarrow Reduce switch size to reduce channel charge?
$\Delta V_{o}=-\frac{1}{2} \frac{Q_{c h}}{C_{s}} \downarrow$
$\tau=R_{O N} C_{s}=\frac{C_{s}}{\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{\text {th }}\right)} \uparrow \quad$ (note $: \frac{T_{s}}{2}=k \tau$)
Consider the figure of merit (FOM):
$F O M=\frac{1}{\tau \times \Delta V_{o}} \approx \frac{\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t h}\right)}{C_{s}} \times 2 \times \frac{C_{s}}{W C_{o x} L\left(\left(V_{H}-V_{i}-V_{t h}\right)\right)}$
$\rightarrow F O M \propto \mu / L^{2}$
* Reducing switch size increases $\tau \rightarrow$ increased distortion \rightarrow not a viable solution
* Small τ and small $\Delta \mathrm{V} \rightarrow$ use minimum chanel length (mandated by technology)
* For a given technology $\tau \times \Delta \mathrm{V} \sim$ constant

Sampling Switch Charge Injection \& Clock Feedthrough Summary

- Extra charge injected onto sampling capacitor @ switch device turn-off
-Channel charge injection
-Clock feedthrough to C_{s} via $\mathrm{C}_{\text {ov }}$
- Issues due to charge injection \& clock feedthrough:
-DC offset induced on hold C
-Input dependant error voltage \rightarrow distortion
- Solutions:
-Slowing down clock edges as much as possible
-Complementary switch?
-Addition of dummy switches?
-Bottom-plate sampling?

Switch Charge Injection \& Clock Feedthrough Complementary Switch

- In slow clock case if area of n \& p devices \& widths are equal $\left(W_{n}=W_{p}\right) \rightarrow$ effect of overlap capacitor for $\mathrm{n} \& \mathrm{p}$ devices to first order cancel (cancellation accuracy depends on matching of $n \& p$ width and overlap length L_{D})
- Since in CMOS technologies $\mu_{n} \sim 2.5 \mu_{p}$ choice of $W_{n}=W_{p}$ not optimal from linearity perspective ($W_{p}>W_{\mathrm{n}}$ preferable)

Switch Charge Injection Complementary Switch Fast Clock

$$
\begin{aligned}
\left|Q_{c h-n}\right| & =W_{n} C_{o x} L_{n}\left(V_{H}-V_{i}-\left|V_{t h-n}\right|\right) \\
\left|Q_{c h-p}\right| & =W_{p} C_{o x} L_{p}\left(V_{i}-V_{L}-\left|V_{t h-p}\right|\right) \\
\Delta V_{o} & \approx-\frac{1}{2}\left(\frac{\left|Q_{c h-n}\right|}{C_{s}}-\frac{\left|Q_{c h-p}\right|}{C_{s}}\right) \\
V_{o} & =V_{i}(1+\varepsilon)+V_{o s} \\
\varepsilon & \approx \frac{1}{2} \times \frac{W_{n} C_{o x} L_{n}+W_{p} C_{o x} L_{p}}{C_{s}}
\end{aligned}
$$

- In fast clock case
- To $1^{\text {st }}$ order, offset due to overlap caps cancelled for equal device width

- Input voltage dependant error worse!

$$
\begin{aligned}
& \text { Switch Charge Injection } \\
& Q_{2} \\
& Q_{2} \approx \frac{1}{2} Q_{c h}^{M 1}+Q_{o v}^{M 1} \\
& \text { For } W_{M 2}=\frac{1}{2} W_{M 1}^{M 2}+2 Q_{o v}^{M 2} \\
& W_{M 2}=1 / 2 W_{M 1}
\end{aligned}
$$

- Dummy switch same L as main switch but half W
- Main device clock goes low, dummy device gate goes high \rightarrow dummy switch acquires same amount of channel charge main switch needs to lose
- Effective only if exactly half of the charge stored in M1 is transferred to M2 (depends on input/output node impedance) and requires good matching between clock fall/rise

Switch Charge Injection Dummy Switch

- To guarantee half of charge goes to each side \rightarrow create the same environment on both sides
* Add capacitor equal to sampling capacitor to the other side of the switch
+ add fixed resistor to emulate input resistance of following circuit
\rightarrow Issues: Degrades sampling bandwidth

Dummy Switch Effectiveness Test

- Dummy switch $\rightarrow \mathrm{W}=1 / 2 \mathrm{~W}_{\text {main }}$
- As Vin is increased Vc1-Vin is decreased \rightarrow channel charge decreased \rightarrow less charge injection
- Note large Ls
\rightarrow good device area matching

Ref: L. A. Bienstman et al, " An Eight-Channel 8 13it Microprocessor Compatible NMOS D/A Converter with Programmable Scaling", IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980

Avoiding Switch Charge Injection Bottom Plate Sampling

- Switches M2 opened slightly earlier compared to M1
\rightarrow Injected charge due to turning off M2 is constant since its GS voltage is constant \& eliminated when used differentially
- Since C_{s} bottom plate is already open when M1 is switched off: \rightarrow No signal dependant charge injected on C_{s}

Flip-Around Track \& Hold

Charge Injection

- At the instant of transitioning from track to hold mode, some of the charge stored in sampling switch S 1 is dumped onto C
- With "Bottom Plate Sampling", only charge injection component due to opening of S1 and is to first-order independent of v_{IN}
- Only a dc offset is added. This dc offset can be removed with a differential architecture

Flip-Around T/H

- S 1 is chosen to be an n-channel MOSFET
- Since it always switches the same voltage, it's onresistance, $\mathrm{R}_{\mathrm{S} 1}$, is signal-independent (to first order)
- Choosing $R_{S 1} \gg R_{S 1 A}$ minimizes the non-linear component of $\mathrm{R}=\mathrm{R}_{\mathrm{S} 1 \mathrm{~A}}+\mathrm{R}_{\mathrm{S} 1}$
- Typically, S1A is a wide (much lower resistance than S1) \& constant V_{GS} switch
- In practice size of S1A is limited by the (nonlinear) S/D capacitance that also adds distortion
- If S1A's resistance is negligible \rightarrow delay depends only on S1 resistance
- S 1 resistance is independent of $\mathrm{V}_{\mathbb{I N}} \rightarrow$ error due to finite time-constant \rightarrow independent of $\mathrm{V}_{\text {IN }}$

Differential Flip-Around T/H Choice of Sampling Switch Size

- THD simulated w/o sampling switch boosted clock $\rightarrow-45 \mathrm{~dB}$
- THD simulated with sampling switch boosted clock (see graph)

Ref: K. Vleugels et al, "A 2.5-V Sigma-Delta Modulator for Broadband Communications Applications " IEEE JSSC, VOL. 36, NO. 12, DECEMBER 2001, pp. 1887

Offset voltage associated with charge injection of S11 \& S12 cancelled by differential nature of the circuit
During input sampling phase \rightarrow amp outputs shorted together
Ref: W. Yang, et al. "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 20011931

Differential Flip-Around T/H

- Gain=1
- Feedback factor $=1 \rightarrow$ high operating speed

Differential Flip-Around T/H Issues: Input Common-Mode Range

$$
\Delta \mathrm{V}_{\mathrm{in}-\mathrm{cm}}=1-1.5=-0.5 \mathrm{~V}
$$

- $\Delta \mathrm{V}_{\text {in-cm }}=\mathrm{V}_{\text {out_com }}-\mathrm{V}_{\text {sig_com }}$
\rightarrow Drawback: Amplifier needs to have large input common-mode compliance

Input Common-Mode Cancellation

- Note: Shorting switch M3 added

Ref: R. Yen, et al. "A MOS Switched-Capacitor Instrumentation Amplifier," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER 19821008

Input Common-Mode Cancellation

$$
\begin{aligned}
& \text { Track mode (} \phi \text { high }) \\
& V_{\mathrm{C}_{1}}=V_{11}, V_{\mathrm{C} 2}=V_{12} \\
& V_{01}=V_{02}=0
\end{aligned}
$$

\rightarrow Input common-mode level removed

Switched-Capacitor Techniques Combining Track \& Hold with Other Functions

- T/H + Charge redistribution amplifier
- T/H \& Input difference amplifier
- T/H \& summing amplifier
- Differential T/H combined with gain stage
- Differential T/H including offset cancellation

T/H + Charge Redistribution Amplifier

Track mode: $(\mathrm{S} 1, \mathrm{~S} 3 \rightarrow$ on $\mathrm{S} 2 \rightarrow$ off)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{IN}}, \mathrm{~V}_{\mathrm{C} 2}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{os}}
\end{aligned}
$$

T/H + Charge Redistribution Amplifier Hold Mode

S1 \& S3 open

 S2 closed$\mathrm{v}_{\mathrm{C} 1} \rightarrow \mathrm{v}_{\mathrm{os}}$
$\Delta V_{C 1}=V_{\text {os }}-\left(V_{\text {os }}-V_{\text {IN }}\right)=V_{\text {IN }}$
$\Delta Q_{1}=C_{1} \Delta V_{C_{1}}=C_{1} V_{1 N}$
$\Delta Q_{2}=C_{2} \Delta V_{C 2}=\Delta Q_{1}$
$\Delta v_{C 2}=\left(\frac{C_{1}}{C_{2}}\right) v_{c 1}=v_{C 2}$
$\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{C} 2}+\mathrm{v}_{\mathrm{os}}=\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \mathrm{v}_{\mathrm{IN}}+\mathrm{v}_{\text {os }}$
\rightarrow Offset NOT cancelled, but not amplified
\rightarrow Input-referred offset $=\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right) \times \mathrm{V}_{\text {OS }}$, \& often $\mathrm{C}_{2}<\mathrm{C}_{1}$

T/H \& Input Difference Amplifier

Sample mode:

$$
\begin{aligned}
& (\mathrm{S} 1, \mathrm{~S} 3 \rightarrow \text { on S2 } \rightarrow \text { off }) \\
& \mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{I} 1}, \mathrm{~V}_{\mathrm{C} 2}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{os}}
\end{aligned}
$$

Input Difference Amplifier Cont'd

Subtract/Amplify mode (S1, S3 \rightarrow off S2 \rightarrow on)
During previous phase:
$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\text {os }}-\mathrm{V}_{11}, \mathrm{~V}_{\mathrm{C} 2}=0$
$V_{0}=V_{\text {os }}$
$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{I} 2}$
$\Delta V_{C 1}=\left(V_{\text {os }}-V_{12}\right)-\left(V_{\text {os }}-V_{11}\right)=V_{11}-V_{12}$

$\Delta V_{C 2}=\left(\frac{C_{1}}{C_{2}}\right) \Delta V_{C 1}=\left(\frac{C_{1}}{C_{2}}\right)\left(V_{11}-V_{12}\right)$
$V_{0}=\left(\frac{C_{1}}{C_{2}}\right)\left(V_{11}-V_{12}\right)+v_{\text {os }}$
\rightarrow Offset NOT cancelled, but not amplified
\rightarrow Input-referred offset $=\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right) \times \mathrm{V}_{\text {OS }}$, \& $\mathrm{C}_{2}<\mathrm{C}_{1}$

T/H \& Summing Amplifier

T/H \& Summing Amplifier Cont'd

Sample mode (S1, S3, S5 \rightarrow on S2, S4 \rightarrow off)
$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{I} 1}, \mathrm{~V}_{\mathrm{C} 2}=\mathrm{V}_{\mathrm{os}}-\mathrm{V}_{13}, \mathrm{~V}_{\mathrm{C} 3}=0$
$V_{0}=V_{\text {os }}$

T/H \& Summing Amplifier Cont'd

Amplify mode (S1, S3, S5 \rightarrow off, $\mathrm{S} 2, \mathrm{~S} 4 \rightarrow$ on)
$\mathrm{v}_{\mathrm{C} 1}=\mathrm{v}_{\mathrm{os}}-\mathrm{v}_{12} \Rightarrow \Delta \mathrm{~V}_{\mathrm{C} 1}=\mathrm{V}_{11}-\mathrm{v}_{\mathbf{1 2}}$

$v_{\mathrm{C} 2}=\mathrm{v}_{\mathrm{os}}-\mathrm{v}_{14} \Rightarrow \Delta \mathrm{v}_{\mathrm{C} 2}=\mathrm{v}_{13}-\mathrm{v}_{14}$
$\Delta Q_{3}=\Delta Q_{1}+\Delta Q_{2}=C_{1} \Delta V_{C 1}+C_{2} \Delta V_{C 2}$
$\Delta V_{c 3}=\frac{\Delta Q_{3}}{C_{3}}=\left(\frac{C_{1}}{C_{3}}\right)\left(v_{11}-V_{12}\right)+\left(\frac{C_{2}}{C_{3}}\right)\left(v_{13}-v_{14}\right)$
$v_{0}=\left(\frac{c_{1}}{C_{3}}\right)\left(v_{11}-v_{12}\right)+\left(\frac{c_{2}}{c_{3}}\right)\left(v_{13}-v_{14}\right)+v_{\text {os }}$

Differential T/H Combined with Gain Stage

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stage $\phi 1 \rightarrow$ High

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stage

- Gain=4C/C=4
- Input voltage common-mode level removed \rightarrow opamp can have low input common-mode compliance
- Amplifier offset NOT removed

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

