## EE247 Lecture 19

#### **ADC Converters**

- ADC architectures and design (continued)
  - Flash ADC and its sources of error (continued): sparkle code & meta-stability
- Comparator design
  - · Single-stage open-loop amplifier
  - · Cascade of open-loop amplifiers
  - · Problem associated with DC offset
    - Cascaded output series cancellation
    - Input series cancellation
    - Offset cancellation through additional input pair plus offset storage capacitors
  - · Latched comparators
  - Comparator examples

EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 1

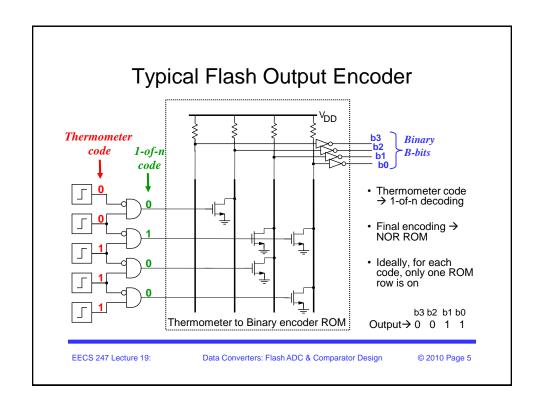
## Term project

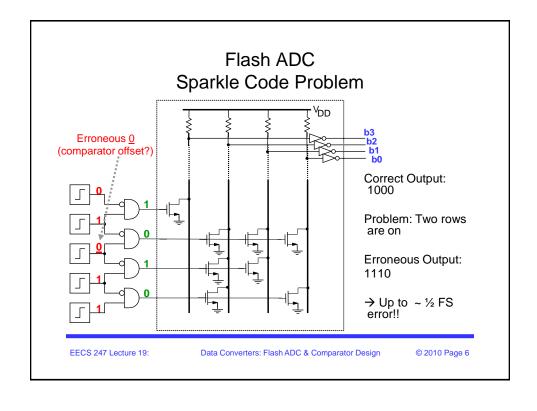
- Design & simulate an ADC with the following specs.
  - 6bit resolution
  - Signal bandwidth 0 to 150MHz
  - ENOB~6bit for f<sub>signal</sub><10MHz</li>
  - Architecture of your choice targeted for minimum power dissipation
  - Detailed project description posted in the homework section
  - Teams of two preferred
  - Report due data: Nov. 30th or earlier
  - Dec. 1<sup>st</sup>: Visit with the instructor by appointment to discuss the implementation
  - Dec. 2<sup>nd</sup> & Dec. 7<sup>th</sup>: PowerPoint presentation ~10min/student in class

EECS 247 Lecture 19:

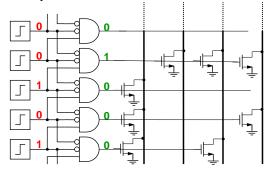
Data Converters: Nyquist Rate ADCs

## **ADC** Architectures


- Slope type converters
- Successive approximation
- → Flash
  - · Time-interleaved / parallel converter
  - Folding
  - · Residue type ADCs
    - Two-step
    - Pipeline
    - **–** ..
  - Oversampled ADCs


EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design


© 2010 Page 3

#### Flash Converter Sources of Error Comparator input: $V_{REF}$ - DC offset R/2 ≶ Nonlinear input capacitance Feedthrough of input signal to reference ladder R ≶ - Kickback noise (disturbs Digital reference) Output Signal dependent sampling time R∮ • Comparator output: R/2 ≶ Sparkle codes (... 0001101111) Meta-stability EECS 247 Lecture 19: Data Converters: Flash ADC & Comparator Design © 2010 Page 4

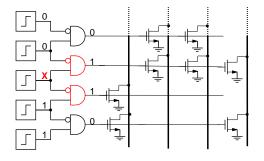




#### Sparkle Tolerant Encoder



- Protects against a single sparkle.
- Possible to improve level of sparkle protection by increasing # of NAND gate inputs


Ref: C. Mangelsdorf et al, "A 400-MHz Flash Converter with Error Correction," JSSC February 1990, pp. 997-1002

EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 7

# Flash ADC Comparator Meta-Stability Issue



Different gates interpret metastable output X differently

Correct output: 1000

Erroneous output: 0000

Solutions:

- –Add latches to comparator outputs (high power)
- -Gray encoding

Ref: C. Portmann and T. Meng, "Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters," JSSC August 1996, pp. 1132-40

EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

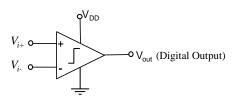
## Gray Encoding Example: 3bit ADC

| Thermometer Code |       |       |       |       | Gray  |       |                | Binary |       |                |       |       |
|------------------|-------|-------|-------|-------|-------|-------|----------------|--------|-------|----------------|-------|-------|
| T <sub>7</sub>   | $T_6$ | $T_5$ | $T_4$ | $T_3$ | $T_2$ | $T_1$ | G <sub>3</sub> | $G_2$  | $G_1$ | B <sub>3</sub> | $B_2$ | $B_1$ |
| 0                | 0     | 0     | 0     | 0     | 0     | 0     | 0              | 0      | 0     | 0              | 0     | 0     |
| 0                | 0     | 0     | 0     | 0     | 0     | 1     | 0              | 0      | 1     | 0              | 0     | 1     |
| 0                | 0     | 0     | 0     | 0     | 1     | 1     | 0              | 1      | 1     | 0              | 1     | 0     |
| 0                | 0     | 0     | 0     | 1     | 1     | 1     | 0              | 1      | 0     | 0              | 1     | 1     |
| 0                | 0     | 0     | 1     | 1     | 1     | 1     | 1              | 1      | 0     | 1              | 0     | 0     |
| 0                | 0     | 1     | 1     | 1     | 1     | 1     | 1              | 1      | 1     | 1              | 0     | 1     |
| 0                | 1     | 1     | 1     | 1     | 1     | 1     | 1              | 0      | 1     | 1              | 1     | 0     |
| 1                | 1     | 1     | 1     | 1     | 1     | 1     | 1              | 0      | 0     | 1              | 1     | 1     |

$$G_1 = T_1 \overline{T_3} + T_5 \overline{T_7}$$

$$G_2 = T_2 \overline{T_6}$$

$$G_3 = T_4$$


- Each T<sub>i</sub> affects only one G<sub>i</sub>
  - → Avoids disagreement of interpretation by multiple gates
- · To a certain extent, protects also against sparkles & meta-stability issue
- · Follow Gray encoder by (latch and) binary encoder

EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 9

#### **Voltage Comparators**



Play an important role in majority of ADCs

Function: Compare the instantaneous value of two analog signals & generate a digital output voltage based on the sign of the difference:

If 
$$V_{i+} - V_{i-} > 0 \rightarrow V_{out} = "1"$$
  
If  $V_{i+} - V_{i-} < 0 \rightarrow V_{out} = "0"$ 

EECS 247 Lecture 19:

Data Converters: Comparator Design

#### Voltage Comparator Architectures

- High gain amplifier with differential analog input & single-ended large swing output
  - Output swing has to be compatible with driving digital logic circuits
  - Open-loop amplification → no frequency compensation required
  - Precise gain not required
- Latched comparators: In response to a strobe (clock edge), input stage disabled & digital output stored in a latch till next strobe
  - Two options for implementation:
    - · Latch-only comparator
    - Low-gain preamplifier + high-sensitivity latch
- · Sampled-data comparators
  - T/H input
  - Offset cancellation

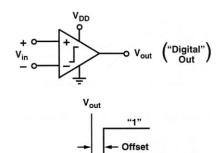
EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 11

#### Comparator Built with High-Gain Amplifier

Amplify  $V_{in}(min)$  to  $V_{DD}$ 


→ V<sub>in</sub>(min) determined by ADC resolution

Example: 12-bit ADC with:

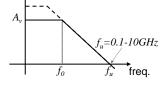
- V<sub>FS</sub>= 1.5V→ 1LSB=0.36mV
- V<sub>DD</sub>=1.8V

→ For 1.8V output & 0.5LSB precision:

$$A_{v}^{Min} = \frac{1.8V}{0.18mV} \approx 10,000$$



## Comparator Design 1-Single-Stage Amplification


• Amplifier maximum Gain-Bandwidth product  $(f_u)$  for a given technology, typically a function of maximum device  $f_t$ 

$$f_u = unity$$
-gain frequency,  $f_o = -3dB$  frequency  $f_o = \frac{f_u}{A_V}$ 

Example:  $f_u = 10GHz$  &  $A_V = 10,000$ 

$$f_{o} = \frac{10 \, GHz}{10,000} \approx 1 MHz$$

$$\tau_{settling} = \frac{1}{2\pi f_{o}} = 0.16 \, \mu sec$$
Allow a few  $\tau$  for output to settle
$$f_{Clock}^{Max.} \rightarrow \frac{1}{5\tau_{settling}} \approx 1.26 MHz$$



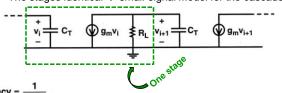
Magnitude

Assumption: Single pole amplifier

Too slow for majority of applications!

→ Try cascade of lower gain stages to broaden frequency of operation

EECS 247 Lecture 19:


Data Converters: Comparator Design

© 2010 Page 13





The stages identical → small-signal model for the cascades:



One stage:

$$|A_V(0)| = g_m R_L$$

$$\omega_o = -3dB \text{ frequency} = \frac{1}{R_L C_T}$$

$$\omega_{\text{u}} = - \text{ unity gain frequency} = \text{G} \times \text{BW} = \frac{\text{g}_{\text{m}}}{\text{C}_{\text{T}}}$$

$$: \omega_o = \frac{\omega_u}{|\mathbf{A}_V(\mathbf{0})|}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

#### Open Loop Cascade of Amplifiers

For an N-stage cascade:

$$\textbf{A}_{\textbf{T}}(j\omega) \, = \, \left[\textbf{A}_{\textbf{V}}(j\omega)\right]^{\textbf{N}} \, = \, \frac{\left[\textbf{A}_{\textbf{V}}(0)\right]^{\textbf{N}}}{\left(1 + j\frac{\omega}{\omega_0}\right)^{\textbf{N}}}$$

 $\omega_{\text{oN}} \equiv -3\text{dB}$  frequency of the N-stage cascade

Then

$$\left|A_T(j\omega_{oN})\right| \,=\, \frac{\left|A_V(0)\right|^N}{\sqrt{2}}$$

$$\boldsymbol{\omega_{oN}} \,=\, \boldsymbol{\omega_o} \sqrt{2^{1/N} - 1} \,=\, \frac{\boldsymbol{\omega_u}}{|\boldsymbol{A_V(0)}|} \sqrt{2^{1/N} - 1}$$

:. For a specified |A<sub>T</sub>(0)|

$$\begin{split} \left|A_V(0)\right| &= \left|A_T(0)\right|^{1/N} \\ \Rightarrow \ \omega_{oN} &= \frac{\omega_u}{\left|A_T(0)\right|^{1/N}} \sqrt{2^{1/N}-1} \end{split}$$

$$\begin{split} \frac{\omega_{oN}}{\omega_{o1}} &= \left[\frac{\omega_u}{\left|A_T(0)\right|^{1/N}}\sqrt{2^{1/N}-1}\right] / \left[\frac{\omega_u}{\left|A_T(0)\right|}\right] \\ &= \left|A_T(0)\right|^{\left(\frac{N-1}{N}\right)} \sqrt{2^{1/N}-1} \end{split}$$

Example: N=4,  $A_T$ =10000 $\rightarrow \omega_{oN}$ =430 $\omega_{o1}$ 

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 15

#### Open Loop Cascade of Amplifiers

#### For $|A_T(DC)|=10,000$

| N  | $\omega_{oN}/\omega_{o1}$ | A <sub>V</sub> (0) |
|----|---------------------------|--------------------|
| 1  | 1                         | 10,000             |
| 2  | 64                        | 100                |
| 3  | 236                       | 21.5               |
| 4  | 435                       | 10                 |
| 5  | 611                       | 6.3                |
| 10 | 1067                      | 2.5                |
| 20 | 1185                      | 1.6                |

Example:

$$N=3$$
,  $f_u=10GHz$  &  $|A_T(0)|=10000$ 

$$f_{oN} = \frac{10GHz}{(10,000)^{1/3}} \sqrt{2^{1/3-1}} \approx 237MHz$$

$$\tau_{settling} = \frac{1}{2\pi f_o} = 0.7nsec$$

$$\tau_{settling} = \frac{1}{2\pi f_o} = 0.7 nsec$$

Allowa few  $\tau$  for output to settle

$$f_{Clock}^{Max.} \rightarrow \frac{1}{5\tau_{settling}} \approx 290MHz$$

 $f_{max}$  improved from 1.26MHz to 290MHz  $\rightarrow$  X236

EECS 247 Lecture 19:

Data Converters: Comparator Design

## Open Loop Cascade of Amplifiers Offset Voltage

- From offset point of view: high gain/stage is preferred
- V<sub>os1</sub> + V<sub>os2</sub> + A<sub>2</sub> V<sub>os3</sub> + A<sub>3</sub>
- Choice of # of stages
   →bandwidth vs offset tradeoff
- Vos + AT AT

Input-referred offset 
$$\rightarrow V_{os} = V_{os1} + \frac{V_{os2}}{A_1} + \frac{V_{os3}}{A_1 \cdot A_2}$$

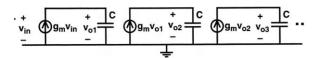
EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 17

#### Open Loop Cascade of Amplifiers Step Response

· Assuming linear behavior (not slew limited)


$$\begin{split} &v_{o1} = \frac{1}{C} \!\! \int_0^t \!\! g_m v_{in} dt = \frac{g_m}{C} v_{in} t \\ &v_{o2} = \frac{1}{C} \!\! \int_0^t \!\! g_m v_{o1} dt = \frac{g_m}{C} \!\! \int_0^t \!\! \frac{g_m}{C} v_{in} t dt = \frac{1}{2} \!\! \left( \frac{g_m}{C} \right)^2 \!\! v_{in} t^2 \\ &v_{o3} = \frac{1}{C} \!\! \int_0^t \!\! g_m v_{o2} dt = \frac{g_m}{C} \!\! \int_0^t \!\! \left[ \frac{1}{2} \!\! \left( \frac{g_m}{C} \right)^2 \!\! v_{in} t^2 \right] \!\! dt \\ &= \frac{1}{3} \!\! \left( \frac{1}{2} \!\! \right) \!\! \left( \frac{g_m}{C} \right)^3 \!\! v_{in} t^3 \end{split}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

# Open Loop Cascade of Amplifiers Step Response

·Assuming linear behavior for cascade of N stages:



N Stages

$$v_{oN} = \left(\frac{g_m}{C}\right)^N \left(\frac{t^N}{N!}\right) v_{in}$$

For the output to reach a specified  $v_{out}$  (i.e.,  $v_{oN} = v_{out}$ ) the delay is

$$\tau_{D} = \left(\frac{c}{g_{m}}\right) \left[ (N!) \left(\frac{v_{out}}{v_{in}}\right) \right]^{1/N}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 19

## Open Loop Cascade of Amplifiers Delay/(C/g<sub>m</sub>)

$$\tau_D = \left(\frac{C}{g_m}\right) \left[ (N!) \left(\frac{V_{out}}{V_{in}}\right) \right]^{1/N}$$

- Minimum total delay broad function of N
- Relationship between # of stages resulting in minimize delay (N<sub>op</sub>) and gain (V<sub>out</sub>/V<sub>in</sub>) approximately:

$$N_{opt} \approx l + log_2 A_T \ for \ A < 1000$$

$$N_{opt} \approx 1.2 \ln A_T$$
 for  $A \ge 1000$ 

Delay/(C/g<sub>m</sub>)

| v <sub>out</sub> /v <sub>in</sub> |     |      |      |                                              |  |
|-----------------------------------|-----|------|------|----------------------------------------------|--|
| N                                 | 10  | 100  | 1000 | 10K                                          |  |
| 1                                 | 10  | 100  | 1000 |                                              |  |
| 2                                 | 4.5 | 14.1 | 44.7 | 141                                          |  |
| 3                                 | 3.9 | 8.4  | 18.2 | 39.1<br>22.1<br>16.4<br>13.9<br>12.6<br>11.9 |  |
| 4                                 | 3.9 | 7.0  | 12.4 |                                              |  |
| 5                                 | 4.1 | 6.5  | 10.4 |                                              |  |
| 6                                 | 4.4 | 6.4  | 9.5  |                                              |  |
| 7                                 | 4.7 | 6.5  | 9.1  |                                              |  |
| 8                                 | 5.0 | 6.7  | 8.9  |                                              |  |
| 9                                 | 5.4 | 6.9  | 8.9  |                                              |  |
| 10                                | 5.7 | 7.2  | 9.0  | 11.4                                         |  |
| 11                                | 6.1 | 7.5  | 9.2  | 11.3<br>11.4                                 |  |
| 12                                | 6.4 | 7.8  | 9.4  |                                              |  |
| 20                                | 9.3 | 10.5 | 11.7 | 13.2                                         |  |

Ref: J.T. Wu, et al., "A 100-MHz pipelined CMOS comparator" IEEE Journal of Solid-State Circuits, vol. 23, pp. 1379 - 1385, December 1988.

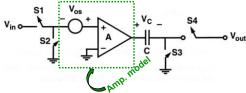
EECS 247 Lecture 19:

Data Converters: Comparator Design

#### Offset Cancellation

- Offset cancellation for sampled-data cascade of amplifiers can be performed by:
  - Store offset on ac-coupling caps in series with amp stages: Offset associated with a specific amp can be cancelled by storing it in series with either the input or the output of that stage
  - Offset can be cancelled by adding a pair of auxiliary inputs to the amplifier and storing the offset on capacitors connected to the aux. inputs during offset cancellation phase

Ref: J.T. Wu, et al., "A 100-MHz pipelined CMOS comparator" *IEEE Journal of Solid-State Circuits*, vol. 23, pp. 1379 - 1385, December 1988.


EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 21

# Offset Cancellation Output Series Cancellation

- Amp modeled as ideal
  - + Vos (input referred)



- 1- Store offset:
  - · S1, S4→ open
  - S2, S3→ closed

 $V_C = A \cdot V_{os}$ 

Ref: J.T. Wu, et al., "A 100-MHz pipelined CMOS comparator" *IEEE Journal of Solid-State Circuits*, vol. 23, pp. 1379 - 1385, December 1988.

EECS 247 Lecture 19:

Data Converters: Comparator Design

## Offset Cancellation Output Series Cancellation

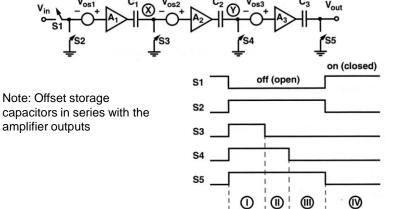
#### 2- Amplification phase:

- ·S2, S3→ open
- •S1, S4→ closed →V<sub>C</sub>=AxV<sub>os</sub>

#### Circuit requirements:

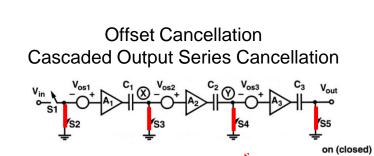
- Amp not saturate during offset storage
- High-impedance (C) load  $\Rightarrow$  C<sub>c</sub> not discharged
- C<sub>c</sub> >> C<sub>L</sub> to avoid attenuation
- C<sub>c</sub> >> C<sub>switch</sub> avoid excessive additional offset due to charge injection

$$V_{in} \circ - V_{os} + V_{c} - V_{out} - V_{c} - V_{c} = C_{c}$$


$$\begin{aligned} \mathbf{V}_{out} &= \mathbf{A} \cdot (\mathbf{V}_{in} + \mathbf{V}_{os}) - \mathbf{V}_{C} \\ &= \mathbf{A} \cdot (\mathbf{V}_{in} + \mathbf{V}_{os}) - \mathbf{A} \cdot \mathbf{V}_{os} \\ &= \mathbf{A} \cdot \mathbf{V}_{in} \end{aligned}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design


© 2010 Page 23

## Offset Cancellation Cascaded Output Series Cancellation

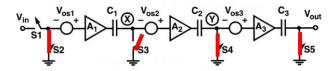


EECS 247 Lecture 19:

Data Converters: Comparator Design



1- S1→ open, S2,3,4,5 closed


 $V_{C1}=A_1xV_{os1}$   $V_{C2}=A_2xV_{os2}$  $V_{C3}=A_1xV_{os3}$  off (open)

EECS 247 Lecture 19:

Data Converters: Comparator Design

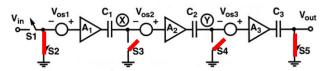
© 2010 Page 25

## Offset Cancellation Cascaded Output Series Cancellation



- 2- S3→ open first
  - Feedthrough from S3 → offset on X
  - $\bullet$  Switch offset ,  $\epsilon_3$   $\,$  induced on node X  $\,$
  - Since S4 remains closed, offset associated with  $\varepsilon_3$   $\rightarrow$  stored on C2

$$V_X = \varepsilon_3$$


$$V_{C1} = A_1 \times V_{os1} - \varepsilon_3$$

$$V_{C2} = A_2 \times (V_{os2} + \varepsilon_3)$$

EECS 247 Lecture 19:

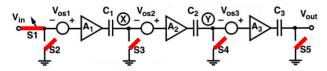
Data Converters: Comparator Design

## Offset Cancellation Cascaded Output Series Cancellation



#### 3- S4→ open

- Feedthrough from S4 → offset on Y
- Switch offset ,  $\mathcal{E}_4$  induces error on node Y
- Since S5 remains closed, offset associated with  $\epsilon_{\!\scriptscriptstyle 4} \to {\rm stored}\,$  on C3


$$\begin{split} &V_Y = \epsilon_4 \\ &V_{C2} = &A_2 x (V_{os2} + \epsilon_3) - \epsilon_4 \\ &V_{C3} = &A_3 x (V_{os3} + \epsilon_4) \end{split}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 27

## Offset Cancellation Cascaded Output Series Cancellation



- 4- S2→ open, S5→ open, S1→ closed
  - S2 open & S1 closed → since input connected to low impedance source charge injection not of major concern
  - Switch offset,  $\varepsilon_5$  introduced due to S5 opening

$$V_X = A_1 x (V_{in} + V_{os1}) - V_{C1}$$
  
=  $A_1 x (V_{in} + V_{os1}) - (A_1 \cdot V_{os1} - \varepsilon_3)$   
=  $A_1 \cdot V_{in} + \varepsilon_3$ 

EECS 247 Lecture 19:

Data Converters: Comparator Design

## Offset Cancellation Cascaded Output Series Cancellation

$$\begin{aligned} V_y &= A_2 x (V_x + V_{os2}) - V_{C2} \\ &= A_2 x (A_1 V_{in} + \varepsilon_3 + V_{os2}) - [A_2 \cdot (V_{os2} + \varepsilon_3) - \varepsilon_4] \\ &= A_1 \cdot A_2 \cdot V_{in} + \varepsilon_4 \end{aligned}$$

$$\begin{aligned} V_{\text{out}} &= A_3 x (V_y + V_{\text{os3}}) - V_{\text{C3}} \\ &= A_3 \cdot (A_2 x A_1 V_{\text{in}} + \varepsilon_4 + V_{\text{os3}}) - [A_3 \cdot (V_{\text{os3}} + \varepsilon_4) - \varepsilon_5] \\ &= A_1 \cdot A_2 \cdot A_3 \cdot V_{\text{in}} + \varepsilon_5 \end{aligned}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 29

## Offset Cancellation Cascaded Output Series Cancellation

$$\begin{aligned} &V_{\text{out}} = A_1.A_2.A_3.(V_{\text{in}} + \epsilon_5/A_1.A_2.A_3) \\ &\text{Input-Referred Offset} = \epsilon_5/A_1.A_2.A_3 \end{aligned}$$

#### Example:

3-stage open-loop differential amplifier with series offset cancellation + output amplifier (see Ref.)

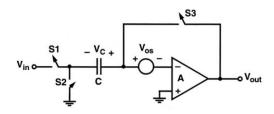
$$A_{Total}(DC) = 2x10^6 = 126dB$$
  
Input-referred offset <  $5\mu V$ 

Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," *IEEE Journal of Solid-State Circuits*, vol. 13, pp. 499 - 503, August 1978.

EECS 247 Lecture 19:

Data Converters: Comparator Design

# Offset Cancellation Output Series Cancellation


- · Advantages:
  - Almost compete cancellation
  - Closed-loop stability not required
- · Disadvantages:
  - Gain per stage must be small
  - Offset storage C in the signal path → could slow down overall performance

EECS 247 Lecture 19:

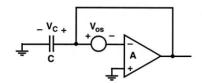
Data Converters: Comparator Design

© 2010 Page 31

#### Offset Cancellation Input Series Cancellation



Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," *IEEE Journal of Solid-State Circuits*, vol. 13, pp. 499 - 503, August 1978.


EECS 247 Lecture 19:

Data Converters: Comparator Design

## Offset Cancellation Input Series Cancellation

#### 1- Store offset

S1 = 0 (off) S2, S3 = 1 (conducting)



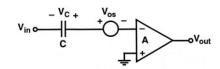
Note: Mandates closed-loop

closed-loop stability

$$V_{C} = -A(V_{C} - V_{os})$$
$$= \left(\frac{A}{A+1}\right)V_{os}$$

Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," *IEEE Journal of Solid-State Circuits*, vol. 13, pp. 499 - 503, August 1978.

EECS 247 Lecture 19:


Data Converters: Comparator Design

© 2010 Page 33

## Offset Cancellation Input Series Cancellation

#### 2- Amplify

S2, S3  $\rightarrow$  open S1 $\rightarrow$  closed



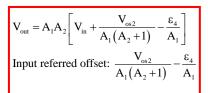
$$V_{out} = -A(V_{in} + V_C - V_{os}) = -A\left[V_{in} + V_{os}\left(\frac{A}{A+1} - 1\right)\right]$$

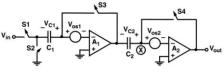
$$\therefore V_{out} = -A \left( V_{in} - \frac{V_{os}}{A+1} \right)$$

and

Input-Referred Offset =  $\frac{V_{os}}{A+1}$ 

Example: A=4


→Input-referred


offset =V<sub>os</sub>/5

EECS 247 Lecture 19:

Data Converters: Comparator Design

# Offset Cancellation Cascaded Input Series Cancellation







 $\epsilon_4$   $\Rightarrow$  charge injection effect associated with opening of S4

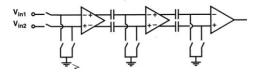
EECS 247 Lecture 19:

Data Converters: Comparator Design

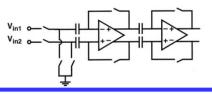
© 2010 Page 35

#### Offset Cancellation Input Series Cancellation

- · Advantages:
  - In applications such as C-array successive approximation ADCs can use C-array to store offset
- · Disadvantages:
  - Cancellation not complete
  - Requires closed loop stability
  - Offset storage C in the signal path- could slow down overall performance


EECS 247 Lecture 19:

Data Converters: Comparator Design


# CMOS Comparators Cascade of Gain Stages

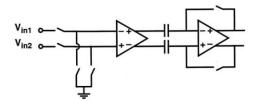
Fully differential gain stages  $\rightarrow$  1st order cancellation of switch feedthrough offset

1- Output series offset cancellation



2- Input series offset cancellation




EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 37

# CMOS Comparators Cascade of Gain Stages

3-Combined input & output series offset cancellation



 $\ensuremath{\text{V}_{\text{os1}}}\xspace \ensuremath{\text{W}_{\text{os2}}}\xspace$  are both stored on a single pair of coupling capacitors

EECS 247 Lecture 19:

Data Converters: Comparator Design

## Offset Cancellation

Cancel offset by additional pair of inputs

 offset storage Cs + an extra clock
 phase for offset storage (Lecture

 18slide 21 thru 23)

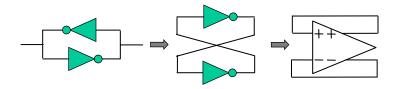
EECS 247 Lecture 19:

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 39

© 2010 Page 40


# Latched Comparators $V_{i+} \circ V_{i-} \circ V_{out}$ $V_{i+} \circ V_{i-} \circ V_{out}$ $V_{i+} \circ V_{i-} \circ V_{out}$ Compares two input voltages at time $t_x$ & generates a digital output: $If V_{i+} \circ V_{i-} > 0 \Rightarrow V_{out} = 1$ $If V_{i+} \circ V_{i-} < 0 \Rightarrow V_{out} = 0$

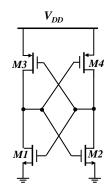
Data Converters: Comparator Design

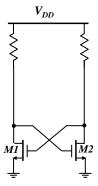
## **CMOS Latched Comparators**

Comparator amplification need not be linear

→ can use a latch → regeneration




- Latch→ Amplification + positive feedback
- Since uses positive feedback, have to reset the latch prior to each comparison


EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

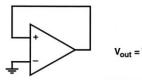
© 2010 Page 41

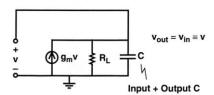
#### Simplest Form of CMOS Latch





EECS 247 Lecture 19:


Data Converters: Flash ADC & Comparator Design


#### CMOS Latched Comparators Small Signal Model

Latch can be modeled as a:

→ Single-pole amp + positive feedback

Small signal ac half circuit



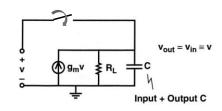


EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 43

#### CMOS Latched Comparator Latch Delay


$$g_m V = \frac{V}{R_L} + C \frac{dV}{dt}$$
 
$$\frac{g_m}{C} \left( 1 - \frac{1}{g_m R_L} \right) V = \frac{dV}{dt}$$
 
$$\frac{g_m}{C} \left( 1 - \frac{1}{g_m R_L} \right) dt = \frac{dV}{V}$$
 Integrating both sides: 
$$\frac{g_m}{C} \left( 1 - \frac{1}{g_m R_L} \right) \int_{t_1}^{t_2} dt = \int_{V_1}^{V_2} \frac{1}{V} dV$$
 
$$\left( \int_{b}^{a} \frac{1}{x} dx = \ln x \Big|_{b}^{a} = \ln a - \ln b = \ln \frac{a}{b} \right)$$

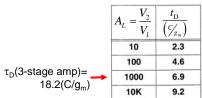
Latch Delay:

$$t_{\rm D} = t_2 - t_1 = \frac{C}{g_{m}} \left( \frac{1}{1 - \frac{1}{g_{m}R_L}} \right) \ln \left( \frac{V_2}{V_1} \right)$$

For  $g_m R_L >> 1$ 

$$t_{\rm D} \approx \frac{C}{g_m} \ln \left( \frac{V_2}{V_1} \right)$$




EECS 247 Lecture 19:

Data Converters: Comparator Design

#### **CMOS Latched Comparators**

#### **Normalized Latch Delay**

$$\begin{aligned} t_{\mathrm{D}} &\approx \frac{C}{g_{m}} \ln \left( \frac{V_{2}}{V_{1}} \right) \\ &\frac{V_{2}}{V_{1}} \rightarrow Latch \, Gain = A_{L} \\ &\rightarrow t_{\mathrm{D}} \approx \frac{C}{g_{m}} \ln A_{L} \end{aligned}$$



Compared to a 3-stage open-loop cascade of amps for equal overall gain of 1000

→Latch faster by about x3

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 45

## **Latch-Only Comparator**

- Much faster compared to cascade of open-loop amplifiers
- Since uses positive feedback, have to reset the latch prior to each comparison
- Main problem associated with latch-only comparator topology:
  - High input-referred offset voltage (as high as 100mV!)
    - Solution:
      - Use low-offset preamplifier to amplify the signal and reduce overall input-referred offset

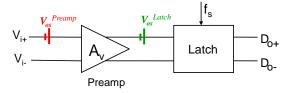
EECS 247 Lecture 19:

Data Converters: Comparator Design

#### Pre-Amplifier + Latch Overall Input-Referred Offset



Latch offset attenuated by preamp gain when referred to preamp input. Assuming the two offset sources are uncorrelated:


$$\begin{split} \sigma_{Input-\text{Re }ferred\_Offset} &= \sqrt{\sigma_{Vos\_\text{Pr} \, eamp}^2 + \frac{1}{A_{\text{Pr} \, eamp}^2} \sigma_{Vos\_Latch}^2} \\ Example: \ \sigma_{Vos\_\text{Pr} \, eamp} &= 4mV \quad \& \quad \sigma_{Vos\_Latch} = 50mV \quad \& \quad A_{\text{Pr} \, eamp} = 10 \\ \sigma_{Input-\text{Re} \, ferred\_Offset} &= \sqrt{4^2 + \frac{1}{10^2} 50^2} = 6.4mV \end{split}$$

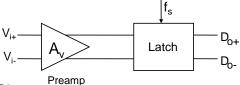
EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 47

#### Pre-Amplifier + Latch Overall Input-Referred Offset




Latch offset attenuated by preamp gain when referred to preamp input. Assuming the two offset sources are uncorrelated:

$$\begin{split} \sigma_{Input-\text{Re }ferred\_Offset} &= \sqrt{\sigma_{Vos\_\text{Pr} \, eamp}^2 + \frac{1}{A_{\text{Pr} \, eamp}^2} \, \sigma_{Vos\_Latch}^2} \\ &Example: \, \sigma_{Vos\_\text{Pr} \, eamp} = 4mV \, \, \& \, \, \, \sigma_{Vos\_Latch} = 50mV \, \, \& \, \, \, \, A_{\text{Pr} \, eamp} = 10 \\ &\sigma_{Input-\text{Re} \, ferred\_Offset} &= \sqrt{4^2 + \frac{1}{10^2} 50^2} = 6.4mV \end{split}$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

#### **Pre-Amplifier Tradeoffs**



- · Example:
  - Latch offset50 to 100mV
  - Preamp DC gain10X
  - Preamp input-referred latch offset
     Input-referred preamplifier offset
     Overall input-referred offset
     5 to 10mV
     2 to 10mV
     5.5 to 14mV
- → Addition of preamp reduces the latch input-referred offset reduced by ~7 to 9X → ~allows extra 3-bit resolution for ADC!

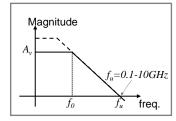
EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 49

#### Comparator Preamplifier Gain-Speed Tradeoffs

• Amplifier maximum Gain-Bandwidth product  $(f_u)$  or a given technology, typically a function of maximum device  $f_t$ 


 $f_u$  =unity gain frequency,  $f_0 = -3dB$  frequency &  $\tau_0$  = settling time

$$f_0 = \frac{f_u}{A_{\text{preamp}}}$$

For example assuming preamp has a gain of 10:

$$f_0 = \frac{f_u}{A_{\text{preamp}}} = \frac{1GHz}{10} = 100MHz$$

$$\tau_0 = \frac{1}{2\pi f_0} = \frac{A_{\text{preamp}}}{2\pi f_u} = 1.6n \sec t$$



- Tradeoff:
  - To reduce the effect of latch offset → high preamp gain desirable
  - Fast comparator → low preamp gain
  - → Choice of preamp gain: compromise speed v.s. input-referred latch offset

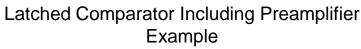
EECS 247 Lecture 19:

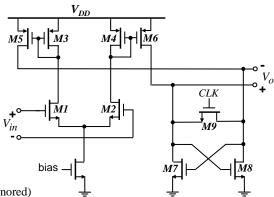
Data Converters: Comparator Design

#### CMOS Preamplifier + Latch Type Comparator Delay in Response

Latch delay previously found:

$$\tau_{\rm D} \approx \frac{C}{g_m} \ln \left( \frac{V_2}{V_1} \right)$$


Assuming gain of  $A_v$  for the preamplifier then  $:V_1 = A_v \times V_{in}$ 


$$\tau_{\rm D} \approx \frac{C}{g_{m}} \ln \left( \frac{V_{0}}{A_{\nu} V_{in}} \right)$$

EECS 247 Lecture 19:

Data Converters: Comparator Design

© 2010 Page 51



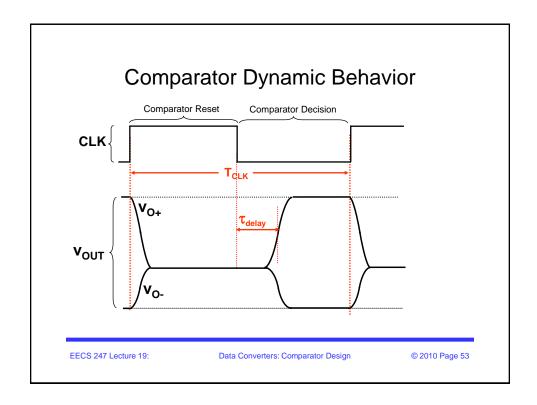


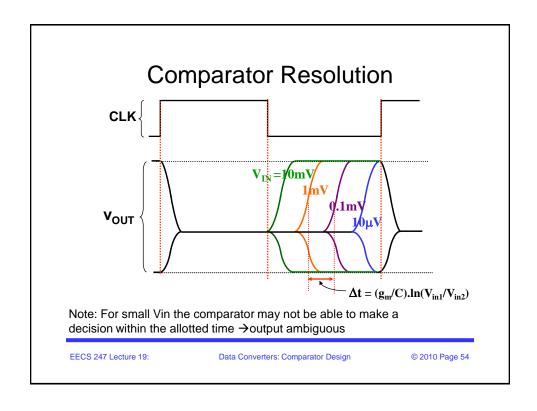
Preamplifier gain:

$$A_{v} = \frac{g_{m}^{M1}}{g_{m}^{M3}} = \frac{\left(V_{GS}^{M3} - V_{th}^{M3}\right)}{\left(V_{GS}^{M1} - V_{th}^{M1}\right)}$$

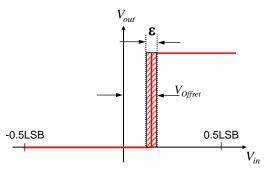
Comparator delay:

(for simplicity, preamp delay ignored)


$$\tau_{\rm D} \approx \frac{C}{g_{m}} \ln \left( \frac{V_{0}}{A_{\nu} Vin} \right)$$


Preamp

Latch


EECS 247 Lecture 19:

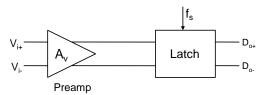
Data Converters : Comparator Design





# Comparator Voltage Transfer Function Non-Idealities




 $V_{\mathit{Offset}}$  o Comparator offset voltage

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

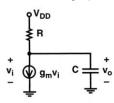
© 2010 Page 55

## **Latched Comparator**



#### Important features:

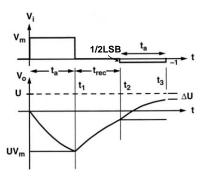
- Overdrive recovery
- Maximum clock rate  $\rm f_s$   $\rightarrow$  settling time, slew rate, small signal bandwidth, overdrive recovery
- Resolution → gain, offset
- Input capacitance (and linearity of input capacitance!)
- Power dissipation
- Input common-mode range and CMR
- Kickback noise


- ...

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

#### Comparator Overdrive Recovery


Linear model for a single-pole amplifier:



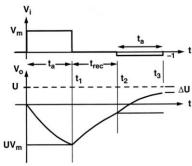
U→ amplification after time t<sub>a</sub>

During reset amplifier settles exponentially to its zero input condition with  $\tau_0$ =RC

Assume Vm → maximum input normalized to 1/2LSB (=1)



Example: Worst case input/output waveforms


Previous input → max. possible e.g. VFS Current input → min. input-referred signal (0.5LSB)

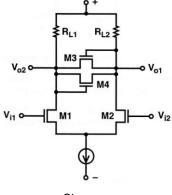
EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 57

## Comparators Overdrive Recovery




Example: Worst case input/output waveforms

- If recovery time is not long enough to allow output to discharge (recover) from previous state- then it may not be able to resolve the current low-level input → error
- To minimize this effect:
  - 1. Passive clamp
  - 2. Active restore
  - 3. Low gain/stage

EECS 247 Lecture 19:

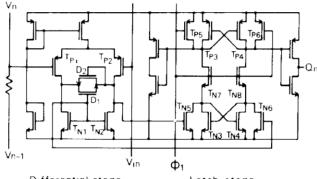
Data Converters: Flash ADC & Comparator Design

#### Comparators Overdrive Recovery Limiting Output Voltage



Φ<sub>R</sub> ο V<sub>o1</sub> V<sub>o2</sub> V<sub>o1</sub> V<sub>o2</sub> V<sub>o2</sub> V<sub>o2</sub> V<sub>o2</sub> V<sub>o2</sub> V<sub>o2</sub> V<sub>o3</sub> V<sub>o4</sub> V<sub>o4</sub> V<sub>o5</sub> V<sub>o5</sub> V<sub>o6</sub> V<sub>o7</sub> V<sub>o7</sub>

Clamp
Adds parasitic capacitance


$$\label{eq:Active Restore} \begin{split} & \underline{\text{Active Restore}} \\ & \text{After outputs are latched by following stage} \\ & \to \text{Activate } \varphi_R \text{ \& equalize output nodes} \end{split}$$

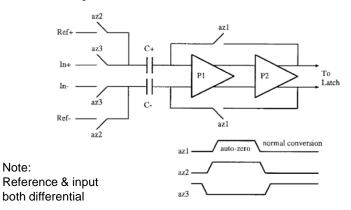
EECS 247 Lecture 19:

Data Converters: Flash ADC & Comparator Design

© 2010 Page 59

# CMOS Comparator Example Flash ADC




- Differential stage Latch stag
- Flash ADC: 8bits, +-1/2LSB INL @ fs=15MHz (Vref=3.8V, LSB~15mV)
   No offset cancellation

Ref: A. Yukawa, "A CMOS 8-Bit High-Speed A/D Converter IC," JSSC June 1985, pp. 775-9

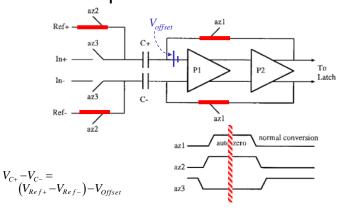
EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

## Comparator with Auto-Zero



Ref: I. Mehr and L. Singer, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

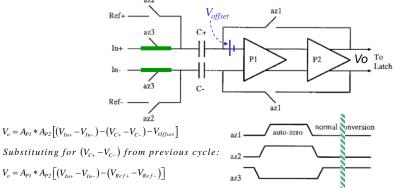

EECS 247 Lecture 19:

Note:

Data Converters: Nyquist Rate ADCs

© 2010 Page 61

## Flash ADC Comparator with Auto-Zero




Ref: I. Mehr and D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

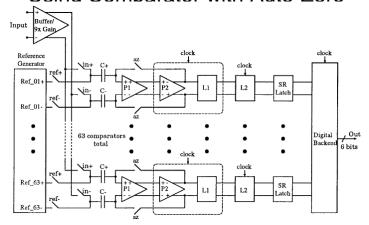
EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

# Flash ADC Comparator with Auto-Zero



Note: Offset is cancelled & difference between input & reference established

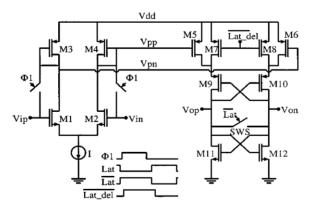

Ref: I. Mehr and D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

© 2010 Page 63

## Flash ADC Using Comparator with Auto-Zero




Ref: I. Mehr and D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

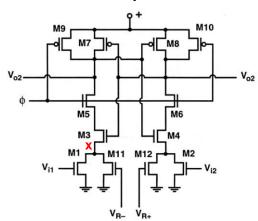
EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

## **Auto-Zero Implementation**



Ref:I. Mehr and L. Singer, "A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC," JSSC March 2000, pp. 318-25


EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

© 2010 Page 65

## Comparator Example

- Variation on Yukawa latch used w/o preamp
- Good for low resolution ADCs (in this case 1.5bit/stage for a pipeline we will see later are tolerant of high offset)
- Note: M1, M2, M11, M12 operate in triode mode
- M11 & M12 width chosen to set comparator threshold
- Conductance at node X is sum of  $G_{\text{M1}}$  &  $G_{\text{M11}}$

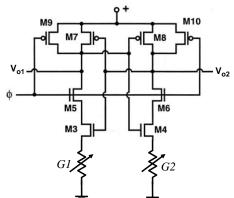


Ref: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter," *IEEE Journal of Solid-State Circuits*, vol. 30, pp. 166 - 172, March 1995

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

#### Comparator Example (continued)


- M1, M2, M11, M12 operate in triode mode with all having equal L
- · Conductance of input devices:

$$G_{I} = \frac{\mu C_{OX}}{L} \times \left[ W_{I} \left( V_{II} - V_{th} \right) + W_{II} \left( V_{R-} - V_{th} \right) \right]$$

$$G_2 = \frac{\mu C_{OX}}{L} \times \left[ W_I (V_{I2} - V_{th}) + W_{II} (V_{R+} - V_{th}) \right]$$

$$\rightarrow \Delta G = \frac{\mu C_{OX} W_I}{L} \times \left[ (V_{II} - V_{I2}) - \frac{W_{II}}{W_I} (V_{R+} - V_{R-}) \right]$$

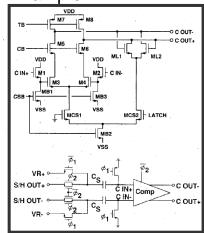
- To 1st order, for W1=W2 & W11=W12  $V_{th}^{latch}=W11/W1$  x  $V_{R}$  where  $V_{R}=V_{R+}$   $V_{R-}$
- $\rightarrow V_R$  fixed W11, 12 varied from comparator to comparator  $\rightarrow$  Eliminates need for resistive divider



Ref: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter," *IEEE Journal of Solid-State Circuits*, vol. 30, pp. 166 - 172, March 1995

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs


© 2010 Page 67

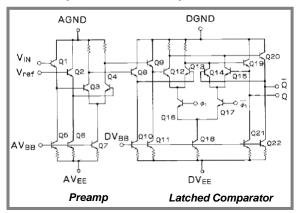
#### Comparator Example

- Used in a pipelined ADC with digital correction
  - →No offset cancellation required

Differential reference & input

- M7, M8 operate in triode region
- Preamp gain ~10
- Input buffers suppress kick-back
- \$\phi\_1\$ high → C<sub>s</sub> charged to VR & \$\phi\_{2B}\$ is also high → current diverted to latch→ comparator output in hold mode
- • †<sub>2</sub> high → C<sub>s</sub> connected to S/Hout & comparator input (VR-S/Hout), current diverted to preamp → comparator in amplify mode




Ref: S. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, NO. 6, Dec. 1987

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs

#### Bipolar Comparator Example

- Used in 8bit 400Ms/s & 6bit 2Gb/s flash ADC
- Signal amplification during \$1 high, latch operates when \$1 low
- · Input buffers suppress kick-back & input current
- Separate ground and supply buses for frontend preamp → kickback noise reduction



Ref: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," IEEE International Solid-State Circuits Conference, vol. XXX, pp. 98 - 99, February 1987
 Ref: T. Wakimoto, et al, "Si bipolar 2GS/s 6b flash A/D conversion LSI," IEEE International Solid-State Circuits Conference, vol. XXXI, pp. 232 - 233, February 1988

EECS 247 Lecture 19:

Data Converters: Nyquist Rate ADCs