Lecture 21
Analog-to-Digital Converters (continued)
 – Residue Type ADCs
 • Two-Step flash
 • Pipelined ADCs
 – Concept and basics of the architecture
 – Effect of building block non-idealities on overall ADC performance
 • Sub-ADC
 • Sub-DAC
 • Gain stage
 – Error correction by adding redundancy
 – Digital calibration
 – Correction for inter-stage gain nonlinearity

ADC Architectures

• Slope type converters
• Successive approximation
• Flash
• Interpolating & Folding
• Residue type ADCs
 – Two-step Flash
 – Pipelined ADCs
 – ...
• Time-interleaved / parallel converter
• Oversampled ADCs
Two-Step Example: (2+2)Bits

- Using only one ADC: output contains large quantization error
- "Missing voltage" or "residue" (-\(\epsilon_q1\))
- Idea: Use second ADC to quantize and add -\(\epsilon_q1\)

Two Stage Example

- Use DAC to compute missing voltage
- Add quantized representation of missing voltage
- Why does this help? How about \(\epsilon_q2\)?
- Since maximum voltage at input of the 2\(^{nd}\) ADC is \(V_{\text{ref1}}/4\) then for 2\(^{nd}\) ADC \(V_{\text{ref2}}=V_{\text{ref1}}/4\) and thus \(\epsilon_q2=\epsilon_q1/4=V_{\text{ref1}}/16\) \(\Rightarrow\) 4bit overall resolution
Two Step (2+2) Flash ADC

4-bit Straight Flash ADC

Ideal 2-step Flash ADC

Voltage quantized by 2nd ADC

Two Stage Example

- Fine ADC is re-used 2^2 times
- Fine ADC’s full scale range needs to span only 1 LSB of coarse quantizer

$$\varepsilon_{q1}^2 = \frac{V_{ref2}}{2^2} = \frac{V_{ref1}}{2^2 \cdot 2^2}$$
Two-Stage (2+2) ADC Transfer Function

Residue or Multi-Step Type ADC

Issues

- Operation:
 - Coarse ADC determines MSBs
 - DAC converts the coarse ADC output to analog. Residue is found by subtracting \(V_{in} - V_{DAC} \)
 - Fine ADC converts the residue and determines the LSBs
 - Bits are combined in digital domain

- Issue:
 1. Fine ADC has to have \(FS = FS_{coarse}/2^{B_1} \) & precision in the order of overall ADC 1/2LSB
 2. Speed penalty → Need at least 1 clock cycle per extra series stage to resolve one sample
Solution to Issue (1)
Reducing Precision Required for Fine ADC

- Accuracy needed for fine ADC relaxed by introducing inter-stage gain
 - Example: By adding gain of \(x(G=2^{B_1}=4) \) prior to fine ADC in \((2+2)\)bit case, precision required for fine ADC is reduced to 2-bit only!
 - Additional advantage: coarse and fine ADC can be identical stages

\[V_{in} \text{ “Coarse”} \rightarrow 2\text{-bit ADC} \rightarrow 2\text{-bit DAC} \rightarrow -\varepsilon_{q_1} \rightarrow G=2^{B_1} \rightarrow 2\text{-bit ADC} \rightarrow \text{“Fine”} \]

\[D_{out} = V_{in} + \varepsilon_{q_1} - \varepsilon_{q_1} + \varepsilon_{q_2} \]

Solution to Issue (2)
Increasing ADC Throughput

- Conversion time significantly decreased by employing T/H between stages
 - All stages busy at all times \(\rightarrow \) operation concurrent
 - During one clock cycle coarse \& fine ADCs operate concurrently:
 - First stage samples/converts/generates residue of input signal sample \# \(n \)
 - While 2nd stage samples/converts residue associated with sample \# \(n-1 \)

\[V_{in} \text{ “Coarse”} \rightarrow 2\text{-bit ADC} \rightarrow 2\text{-bit DAC} \rightarrow -\varepsilon_{q_1} \rightarrow T/H+(G=2^{B_1}) \rightarrow \text{“Fine”} \rightarrow 2\text{-bit ADC} \]

\[D_{out} = V_{in} + \varepsilon_{q_1} - \varepsilon_{q_1} + \varepsilon_{q_2} \]
Residue Type ADCs

- Two-Step flash
- Pipelined ADCs
 - Basic operation
 - Effect of sub-ADC, sub-DAC, gain stage non-idealities on overall ADC performance
 - Error correction by adding redundancy
 - Digital calibration
 - Correction for inter-stage gain nonlinearity
 - Implementation
 - Practical circuits
 - Stage scaling
 - Combining the bits
 - Stage implementation
 - Circuits
 - Noise budgeting
 - How many bits per stage?

Pipeline ADC Block Diagram

- Idea: Cascade several low resolution stages to obtain high overall resolution (e.g. 10-bit ADC can be built with series of 10 ADCs each 1-bit only!)
- Each stage performs coarse A/D conversion and computes its quantization error, or "residue"
- All stages operate concurrently
Pipeline ADC

Concurrent Stage Operation

- Stages operate on the input signal like a shift register
- New output data every clock cycle, but each stage introduces at least ½ clock cycle latency

Pipeline ADC

Latency

Note: One conversion per clock cycle & 8 clock cycle latency

[Analog Devices, AD 9226 12bit ADC Data Sheet]
Pipelined ADC Characteristics

- Number of components (stages) grows linearly with resolution

- Pipelining
 - Trading latency for overall component count
 - Latency may be an issue in e.g. control systems
 - Throughput limited by speed of one stage → Fast

- Versatile: 8...16 bits, 1...400 MS/s

- One important feature of pipelined ADCs: many analog circuit non-idealities can be corrected digitally

Pipeline ADC Digital Data Alignment

- Digital shift register aligns sub-conversion results in time
Cascading More Stages

- LSB of last stage becomes very small
- All stages need to have full precision
- Impractical to generate several V_{ref}

Pipeline ADC

Inter-Stage Gain Elements

- Practical pipelines by adding inter-stage gain → use single V_{ref}
- Precision requirements decrease down the pipe
 - Advantageous for noise, matching (later), power dissipation
- All stages can operate concurrently → Throughput 1 sample/clock cycle
Complete Pipeline Stage

V_{in} \quad B\text{-bit ADC} \quad \text{D} \quad \text{B}\text{-bit DAC} \quad V_{res} \quad G \quad V_{ref}

“Residue Plot”

E.g.:
B = 2
G = 2^2 = 4

Note: None of the blocks have ideal performance

Question: What is the effect of the non-idealities?

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors - comparator offset
 - Gain stage offset
 - Gain stage gain error
 - Sub-DAC error
Pipeline ADC Single Stage Model

\[V_{\text{res}} = G \times \varepsilon_q \]

Pipeline ADC Multi-Stage Model

\[D_{\text{out}} = V_{\text{in,ADC}} + \varepsilon_{q1} \left(I - \frac{G_1}{G_{d1}} \right) + \varepsilon_{q2} \left(I - \frac{G_2}{G_{d1}} \right) + \ldots + \varepsilon_{q(n-1)} \left(I - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_{dj}} \]
Pipeline ADC Model

- If the "Analog" and "Digital" gain/loss is precisely matched:

\[
D_{\text{out}} = V_{\text{in,ADC}} + \frac{\varepsilon_{\text{analog}}}{\prod_{j=1}^{n} G_j} \quad \text{where} \quad \varepsilon_{\text{analog}} = \frac{V_{\text{ref}}}{2^B_n} \quad \text{&} \quad B_n = \# \text{ of bits in final stage}
\]

\[
D.R. = 20 \log_{10} \frac{\text{rms FS Signal}}{\text{rms Quant. Noise}} = 20 \log_{10} \frac{V_{\text{ref}} \sqrt{\frac{3}{2}}}{\sqrt{12 \times 2^B_n \prod_{j=1}^{n} G_j}} = 20 \log_{10} \left(\frac{3}{2} \times 2^B_n \times \prod_{j=1}^{n} G_j \right)
\]

\[
B_{\text{ADC}} = \log_2 \left(2^B_n \times \prod_{j=1}^{n} G_j \right)
\]

\[
B_{\text{ADC}} = B_n + \log_2 \prod_{j=1}^{n} G_j
\]

Pipeline ADC Observations

- The aggregate \textbf{ADC resolution is independent of sub-ADC resolution}!

- \textit{Effective} stage resolution \(B_j = \log_2(G_j)\)

- \textbf{Overall conversion error does not (directly) depend on sub-ADC errors}!

- Only error term in \(D_{\text{out}}\) contains quantization error associated with the last stage

- So why do we care about sub-ADC errors?
 - Go back to two stage example
Pipeline ADC

Sub-ADC Errors

\[D_{out} = V_{in,ADC} + \varepsilon_{q_1} \prod_{j=1}^{n-1} G_j \]

\[D_{out} = V_{in,ADC} + \varepsilon_{q_2} G_i \]

\(D_{out} = 1000 \)

Grows outside \(\frac{1}{2} \) LSB bounds
Pipeline ADC

1st-Stage Comparator Offset

- Problem: \(V_{res1} \) exceeds 2nd pipeline stage overload range

First stage ADC Levels:
(Levels normalized to LSB)
Ideal comparator threshold:
 Comparator threshold including offset: -1, 0.3, +1

Overall ADC Transfer Curve

Missing Code!

Pipeline ADC

Three Ways to Deal with Sub-ADC Errors

- All involve “sub-ADC redundancy”
- Redundancy in stage that produces errors
 - Choose gain for residue to be processed by the 2nd stage < 2\(^{B1}\)
 - Higher resolution sub-ADC & sub-DAC
- Redundancy in succeeding stage(s)
(1) Inter-Stage Gain Following 1st Stage $<2^{B_1}$

- Choose G_1 less than 2^{B_1}
- Effective stage resolution could become non-integer
 $B_{1\text{eff}}=\log_2 G_1$
- E.g. if $G_1=3.8 \rightarrow B_{1\text{eff}}=1.8$ bit

Correction Through Redundancy

- "enlarged" residuum still within input range of next stage

If $G_1=2$ instead of 4
- Only 1-bit resolution from first stage (3-bit total)
- In spite of comparator offset: No overall error
(2) Higher Resolution Sub-ADC

- Keep G_1 precise power of two (e.g. G_1=4)
- Add extra decision levels in sub-ADC (e.g. add 1 extra bit to 1st stage)
- E.g. B_1=B_{1eff}+1

-Ref: Singer et. al., VSLI 1996

(3) Over-Range Accommodation Through Increase in Following Stage Resolution

- No redundancy in stage with errors
- Add extra decision levels in succeeding stage

-Ref: Opris et. al., JSSC 12/1998
Redundancy

- The preceding analysis applies to any stage in an n-stage pipeline
- Can always perceive a multi-stage pipelined ADC as a single stage + backend ADC

\[\text{Vin} \rightarrow B_1 \text{ bits} \rightarrow B_2 \text{ bits} \rightarrow B_3 \text{ bits} \rightarrow B_4 \text{ bits} \]

\[\text{Vin} \rightarrow B_1 \text{ bits} \rightarrow \text{Vres1} \rightarrow B_2+B_3+B_4 \text{ bits} \]

Redundancy

- In literature, sub-ADC redundancy schemes are often called "digital correction" – a misnomer!
- No error correction takes place
- We can tolerate sub-ADC errors as long as:
 - The residues stay "within the box", or
 - Another stage downstream "returns the residue to "within the box" before it reaches last quantizer
- Let's calculate tolerable errors for popular "1.5 bits/stage" topology
1.5-Bit/Stage Pipelined ADC

- \(G = -2 \)
- Effective bit/stage \(B_{\text{eff}} = \log_2 |G| = \log_2 2 = 1 \)
- Actual bit/stage \(B = \log_2 (2+1) = 1.589... \)
- 1bit/stage + 0.5bit \(\rightarrow \) redundancy

Ref: Lewis et. al., JSSC 3/1992

1.5 Bits/Stage Example

- Comparators threshold levels placed strategically
- \(G = 2 \)
- \(B_{\text{eff}} = \log_2 G = \log_2 2 = 1 \)
- \(B = \log_2 (2+1) = 1.589... \)
- 0.5bit \(\rightarrow \) redundancy

Ref: Lewis et. al., JSSC 3/1992
3-Stage 1.5-bit-per-Stage Pipelined ADC

- All three stages → Comparator with offset
- Overall transfer curve
 - No missing codes
 - Some DNL error

Summary So Far

Pipelined A/D Converters

- Cascade of low resolution stages
 - Stages operate concurrently - trades latency for overall component count
 - Throughput limited by speed of one stage → Fast
- Errors and correction
 - Built-in redundancy compensate for sub-ADC inaccuracies (interstage gain: \(G = 2^{B_{\text{neff}}} \) with \(B_{\text{neff}} < B_j \))
Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance

- Need to find means to tolerate/correct errors

- Important sources of error
 - Sub-ADC errors - comparator offset
 - Gain stage offset
 - Gain stage error
 - Sub-DAC error

Inter-Stage Amplifier Offset

- Input referred converter offset – usually no problem
- Equivalent sub-ADC offset - accommodated through adequate redundancy
Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance

- Need to find means to tolerate/correct errors

- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
 - Gain stage gain error
 - Sub-DAC error

Gain Stage Gain Error

\[
D_{out} = V_{in,ADC} + \varepsilon_q \left(\frac{1 - G_1 + \delta}{G_{d1} + \delta} \right) + \frac{\varepsilon_{q2}}{G_{d1}} \left(1 - \frac{G_2}{G_{d2}} \right) + \cdots + \frac{\varepsilon_{q(n-1)}}{\prod_{j=1}^{n-1} G_j} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_j}
\]

- Resolution is function of \(\log_2 G \) therefore error in G affects resolution
 - Small amount of gain error can be tolerated
Gain Stage Gain Inaccuracy

- Gain error can be compensated in digital domain – "Digital Calibration"

- Problem: Need to measure/calibrate digital correction coefficient

- Example: Calibrate 1-bit first stage

- Objective: Measure G in digital domain
ADC Model

\[V_{\text{res1}} = G \cdot \frac{V_{\text{in}} - V_{\text{ref}}}{2} \]

\[V_{\text{DAC}}(D = 0) = 0 \]

\[V_{\text{DAC}}(D = 1) = \frac{V_{\text{ref}}}{2} \]

Gain Stage Inacurracy Calibration – Step 1

\[V_{\text{res1}}^{(1)} = G \cdot \frac{V_{\text{in}} - V_{\text{ref}}}{2} \]

\[D_{\text{back}}^{(1)} = G \cdot \frac{V_{\text{in}} - V_{\text{ref}}}{2} \rightarrow \text{store} \]
Gain Stage Inaccuracy Calibration – Step 2

\[V_{\text{res}}^{(2)} = G \cdot (V_{\text{in}} - 0) \]
\[D_{\text{back}}^{(2)} = G \cdot \frac{(V_{\text{in}} - 0)}{V_{\text{ref}}} \rightarrow \text{store} \]

Gain Stage Inaccuracy Calibration – Evaluate

\[D_{\text{back}}^{(1)} = G \cdot \frac{(V_{\text{in}} - V_{\text{ref}} / 2)}{V_{\text{ref}}} \]
\[-D_{\text{back}}^{(2)} = G \cdot \frac{(V_{\text{in}} - 0)}{V_{\text{ref}}} \]

\[D_{\text{back}}^{(1)} - D_{\text{back}}^{(2)} = \frac{1}{2} \cdot G \]

• To minimize the effect of backend ADC noise → perform measurement several times and take the average
"Accuracy Bootstrapping"

\[D_{out} = V_{in,ADC} + \varepsilon_{q1} \left(1 - \frac{G_1}{G_{d_1}} \right) + \varepsilon_{q2} \left(1 - \frac{G_2}{G_{d_2}} \right) + \ldots + \varepsilon_{q(n-1)} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \varepsilon_{qn} \frac{1}{\prod_{j=1}^{n-1} G_d} \]

- Highest sensitivity to gain errors in front-end stages

Ref:
L. Singer et al., "A 12 b 65 MSample/s CMOS ADC with 82 dB SFDR at 120 MHz," *ISSCC 2000, Digest of Tech. Papers.*, pp. 38-9 (calibration in opposite direction!)
Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
 - Gain stage error
 - Sub-DAC error

DAC Errors

- Can be corrected digitally as well
- Same calibration concept as gain errors
 → Vary DAC codes & measure errors via backend ADC
DAC Calibration – Step 1

• $\varepsilon_{\text{DAC}}(0)$ equivalent to offset - ignore

DAC Calibration – Step 2\ldots2B_1

• Stepping through DAC codes 1\ldots2B_1 yields all incremental correction values
• Measurements repeated and averages to account for variance associated with noise
Pipeline ADC
Example: Calibration Hardware

- Above block diagram may seem extensive however, in current fine-line CMOS technologies digital portion of a pipeline ADCs consume insignificant power and area compared to the analog sections.

Summary So Far
Pipelined A/D Converters

- Cascade of low resolution stages
 - By adding inter-stage gain = $2^{B_{e_{f_{i}}}}$
 - No need to scale down V_{ref} for stages down the pipe
 - Reduced accuracy requirement for stages coming after stage 1
 - Addition of Track & Hold function to interstage-gain
 - Stages can operate concurrently
 - Throughput increased to as high as one sample per clock cycle
 - Latency function of number of stages & conversion-per-stage
 - Correction for circuit non-idealities
 - Built-in redundancy compensate for sub-ADC inaccuracies such as comparator offset (interstage gain: $G=2^{B_{e_{f_{i}}}}, B_{ref} < B_{i}$)
 - Error associated with gain stage and sub-DAC calibrated out