EE247 Lecture 24

Oversampled ADCs (continued)

- Comparison of limit cycle oscillations 2^{nd} order vs 1^{st} order $\Sigma\Delta$ modulator
- -2nd order $\Sigma\Delta$ modulator
 - Practical implementation
 - Effect of various building block nonidealities on the $\Sigma\Delta$ performance
 - · Integrator maximum signal handling capability
 - · Integrator finite DC gain
 - Comparator hysteresis (minimum signal handling capability)
 - · Integrator non-linearity
 - · Effect of KT/C noise
 - · Finite opamp bandwidth
 - · Opamp slew limited settling
 - Implementation example
- -Higher order $\Sigma\Delta$ modulators
 - Cascaded modulators (multi-stage)
 - Single-loop single-quantizer modulators with multi-order filtering in the forward path

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 1

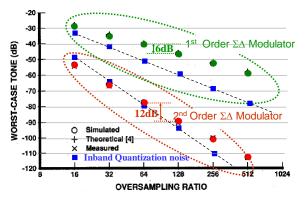
Limit Cycle Oscillation

- Issue particular to $\Sigma\Delta$ modulator type data converters:
 - -In response to low level DC inputs → quantization noise becomes periodic and some of the components could fall with in the passband of interest and thus limit the dynamic range
 - –More pronounced in 1st order $\Sigma\Delta$ modulators compared to higher order (e.g. 2nd order)
- Solution:
 - ➤ Use dithering (inject noise-like signal at the input): to randomize quantization noise
 - If circuit thermal noise is large enough → acts as dither
 - Typically, in the design of $\Sigma\Delta$ modulator integrating C values chosen carefully so that inband thermal noise level exceeds quantization noise

EECS 247- Lecture 24 Oversampled ADCs © 2010 Page 2

Limit Cycle Tones in 1st Order & 2^{nd} Order $\Sigma\Delta$ Modulator

- Higher oversampling ratio
 → lower tones
- 2nd order tones much lower compared to 1st
- 2X increase in M decreases the tones by 6dB for 1st order loop and 12dB for 2nd order loop



Ref: B. P. Brandt, et al., "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.
 R. Gray, "Spectral analysis of quantization noise in a single-loop sigma-delta modulator with dc input," IEEE Trans. Commun., vol. 37, pp. 588-599, June 1989.

EECS 247- Lecture 24

Oversampled ADCs

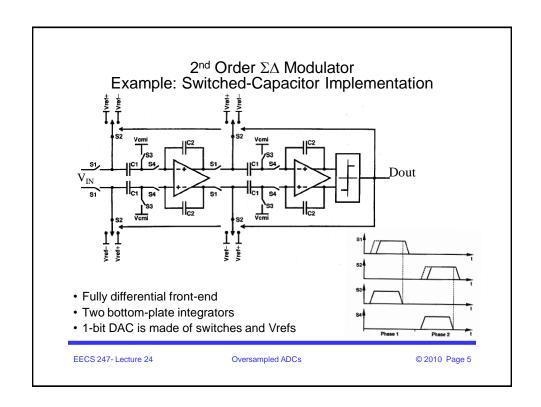
© 2010 Page 3

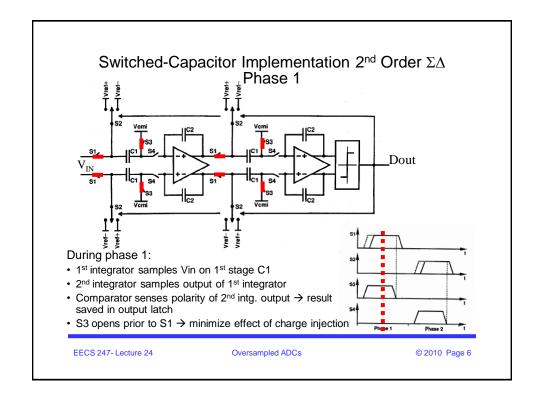
$\Sigma\Delta$ Implementation Practical Design Considerations

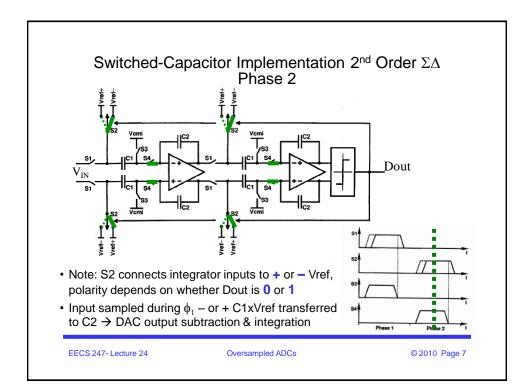
- · Internal node scaling & clipping
- · Effect of finite opamp gain & nonlinearity
- KT/C noise
- · Opamp noise
- · Finite opamp bandwidth
- · Opamp slew limited settling
- · Effect of comparator nonidealities
- Power dissipation considerations

EECS 247- Lecture 24

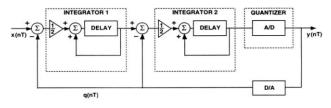
Oversampled ADCs







Switched-Capacitor Implementation $2^{\rm nd}$ Order $\Sigma\Delta$ Nodes Scaled for Maximum Dynamic Range

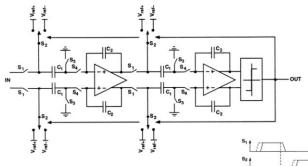


- Modification (gain of ½ in front of integrators) reduce & optimize required signal range at the integrator outputs ~ 1.7x input full-scale (△)
- Note: Non-idealities associated with 2nd integrator and quantizer when referred to the $\Sigma\Delta$ input is attenuated by 1st integrator high gain
 - → The only building block requiring low-noise and high accuracy is the 1st integrator

Ref: B.E. Boser and B.A. Wooley, "The Design of Sigma-Delta Modulation A/D Converters," IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988.

EECS 247- Lecture 24 Oversampled ADCs © 2010 Page 8

2^{nd} Order $\Sigma\Delta$ Modulator Switched-Capacitor Implementation



• The ½ loss in front of each integrator implemented by choice of:

 $C_2 = 2C_1$

$$\rightarrow f_0^{intg} = f_s/(4\pi)$$

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 9

Design Phase Simulations

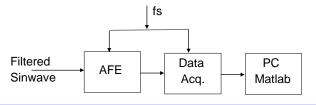
- Design of oversampled ADCs requires simulation of extremely long data traces due to the oversampled nature of the system
- · SPICE type simulators:
 - -Normally used to test for gross circuit errors only
 - -Too slow for detailed performance verification
- Typically, behavioral modeling is used in MATLAB-like environments
- Circuit non-idealities either computed or found by using SPICE at subcircuit level
- Non-idealities introduced in the behavioral model one-by-one first to fully understand the effect of each individually
- Next step is to add as many of the non-idealities simultaneously as possible to verify whether there are interaction among non-idealities

EECS 247- Lecture 24

Oversampled ADCs

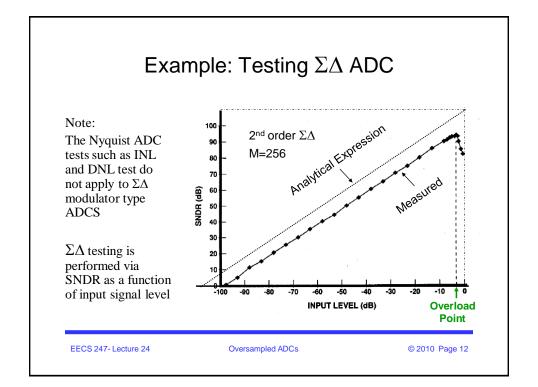
Testing of AFE

- Typically in the design phase, provisions are made to test the AFE separate from Decimator
- Output of the AFE (0,1) is acquired by a data acquisition board or logic analyzer
- Matlab-like program is used to analyze data e.g. perform filtering & measure SNR, SNDR.....
- During pre-silicon design phase, output of AFE is filtered in software & Matlab used to measure SNR, SNDR



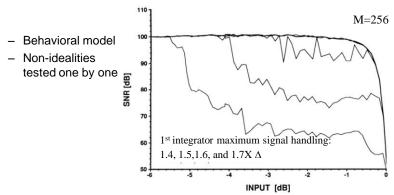
EECS 247- Lecture 24

Oversampled ADCs



2^{nd} Order $\Sigma\Delta$

Effect of 1st Integrator Maximum Signal Handling Capability on SNR



Effect of 1st Integrator maximum signal handling capability on converter SNR
 → No SNR loss for max. sig. handling >1.7∆

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

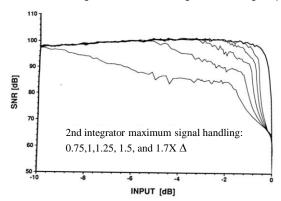
EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 13

2^{nd} Order $\Sigma\Delta$

Effect of 2nd Integrator Maximum Signal Handling Capability on SNR



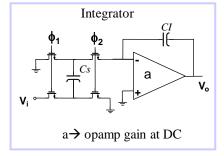
• Effect of 2nd Integrator maximum signal handling capability on SNR \rightarrow No SNR loss for max. sig. handling >1.7 Δ

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247- Lecture 24

Oversampled ADCs

${\bf 2}^{\rm nd} \ {\bf O}{\bf r}{\bf d}{\bf e}{\bf r} \ \Sigma \Delta$ Effect of Integrator Finite DC Gain



$$H(z)_{ideal} = \frac{Cs}{CI} \times \frac{z^{-1}}{1 - z^{-1}}$$

$$H(z)_{Finit DC Gain} = \frac{Cs}{CI} \times \frac{\left(\frac{a}{1 + a + \frac{Cs}{CI}}\right)z^{-1}}{1 - \left(\frac{1 + a}{1 + a + \frac{Cs}{CI}}\right)z^{-1}}$$

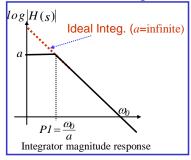
$$\to H(DC) = a$$

EECS 247- Lecture 24

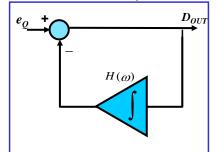
Oversampled ADCs

© 2010 Page 15

${\rm 1^{nd}~Order~}\Sigma\Delta$ Effect of Integrator Finite DC Gain Analysis



 Note: Quantization transfer function wrt output has integrator in the feedback path:

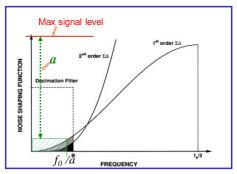


$$\begin{split} &\frac{Dout}{e_Q} = \frac{1}{I + H(\omega)} \\ &\rightarrow @ \ DC \ for \ ideal \ integ: \ \frac{Dout}{e_Q} = 0 \\ &\rightarrow @ \ DC \ for \ real \ integ: \ \frac{Dout}{e_Q} \approx \frac{1}{a} \end{split}$$

EECS 247- Lecture 24

Oversampled ADCs

$\rm 1^{st}~\&~2^{nd}~Order~\Sigma\Delta$ Effect of Integrator Finite DC Gain



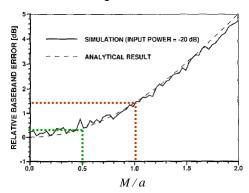
- Low integrator DC gain → Increase in total in-band quantization noise
- Can be shown: If a > M (oversampling ratio) → Insignificant degradation in SNR
- Normally DC gain designed to be >> M in order to suppress nonlinearities

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 17

${\bf 2}^{\rm nd} \; {\bf O}{\bf r}{\bf d}{\bf e}{\bf r} \; {\boldsymbol \Sigma} \Delta$ Effect of Integrator Finite DC Gain



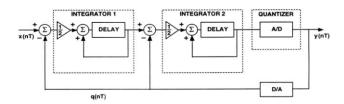
• Example: $a = 2M \rightarrow 0.4$ dB degradation in SNR $a = M \rightarrow 1.4$ dB degradation in SNR

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247- Lecture 24

Oversampled ADCs

${\bf 2^{nd}~Order~}\Sigma\Delta$ Effect of Comparator Non-Idealities on $\Sigma\Delta$ Performance



1-bit A/D → Single comparator

- Speed must be adequate for the operating sampling rate
- Input referred offset- feedback loop & high DC intg. gain suppresses the effect
 - \rightarrow $\Sigma\Delta$ performance quite insensitive to comparator offset
- Input referred comparator noise- same as offset
- Hysteresis= Minimum overdrive required to change the output

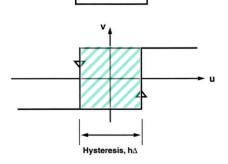
EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 19

2^{nd} Order $\Sigma\Delta$ Comparator Hysteresis

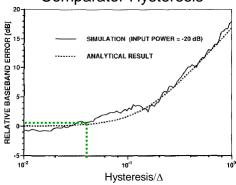
Hysteresis= Minimum overdrive required to change the output



1-bit A/D

EECS 247- Lecture 24

Oversampled ADCs



- \rightarrow Comparator hysteresis < $\Delta/25$ does not affect SNR
- \rightarrow E.g. Δ =1V, comparator hysteresis up to 40mV tolerable

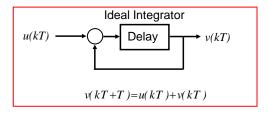
Key Point: One of the main advantages of $\Sigma\Delta$ ADCS \rightarrow Highly tolerant of comparator and in general building-block non-idealities

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 21

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities



With non-linearity added:

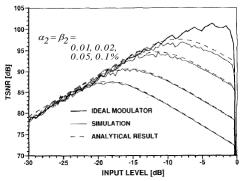
$$v(kT+T) = u(kT) + \alpha_2 [u(kT)]^2 + \alpha_3 [u(kT)]^3 \dots + v(kT) + \beta_2 [v(kT)]^2 + \beta_3 [v(kT)]^3 + \dots$$

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247- Lecture 24

Oversampled ADCs

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities (Single-Ended)



- · Simulation for single-ended topology
- Effect of even order nonlinearities can be significantly suppressed by using differential circuit topologies

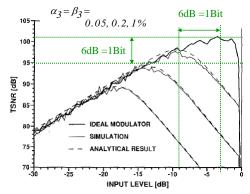
Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 23

2^{nd} Order $\Sigma\Delta$ Effect of Integrator Nonlinearities



- · Simulation for single-ended topology
- Odd order nonlinearities (3rd in this case)

Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

EECS 247- Lecture 24

Oversampled ADCs

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator Nonlinearities

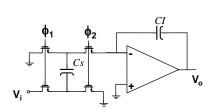
- Odd order nonlinearities (usually 3rd) could cause significant loss of SNDR for high resolution oversampled ADCs
- · Two significant source of non-linearities:
 - · Non-linearities associated with opamp used to build integrators
 - Opamp open-loop non-linearities are suppressed by the loopgain since there is feedback around the opamp
 - Class A opamps tend to have lower open-loop gain but more linear output versus input transfer characteristic
 - Class A/B opamps typically have higher open-loop gain but non-linear transfer function. At times this type is preferred for $\Sigma\Delta$ AFE due to its superior slew rate compared to class A type
 - · Integrator capacitor non-linearites
 - Poly-Sio2-Poly capacitors → C non-linearity in the order of 10ppm/V
 - Metal-Sio2-Metal capacitors ~ 1ppm/V

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 25

$2^{nd} \ Order \ \Sigma \Delta$ Effect of Integrator KT/C noise



$$\overline{v_n^2} = \frac{2KT}{Cs}$$

$$\overline{v_n^2} / f = 2\frac{kT}{Cs} \times \frac{1}{fs/2} = 4\frac{kT}{Cs \times fs}$$

Total in-band noise:

$$\overline{v_n^2}_{input-referred} = 4 \frac{kT}{Cs \times fs} \times f_B$$

$$2kT$$

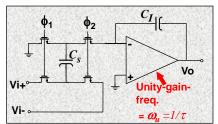
$$=\frac{2kT}{Cs\times M}$$

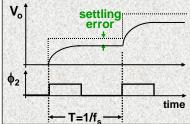
- For the example of digital audio with 16-bit (96dB) & M=256 (110dB SQNR)
 - $\rightarrow Cs = 1pF \rightarrow 7\mu Vrms$ noise
 - \rightarrow If $V_{FS}=2V_{p\cdot p\cdot d}$ then thermal noise @ -101dB \rightarrow degrades overall SNR by ~9dB
 - → Cs=1pF, CI=2pF → much smaller capacitor area (~1/M) compared to Nyquist
 - →Since thermal noise provides some level of dithering → better not choose much larger capacitors!

EECS 247- Lecture 24

Oversampled ADCs

$$2^{\text{nd}}$$ Order $\Sigma\Delta$ Effect of Finite Opamp Bandwidth





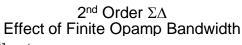
Assumptions:

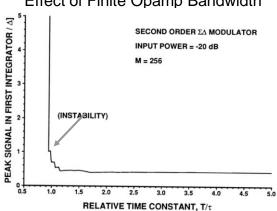
Opamp → does not slew
Opamp has only one pole → exponential settling

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 27

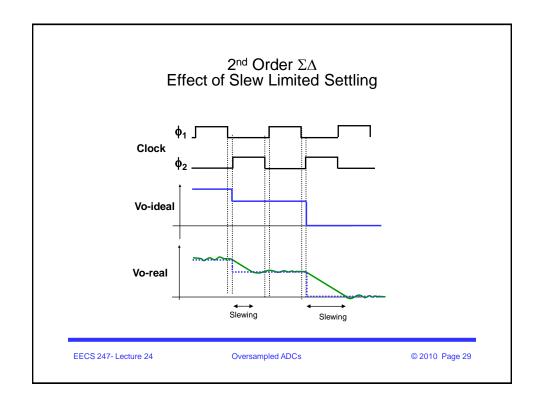


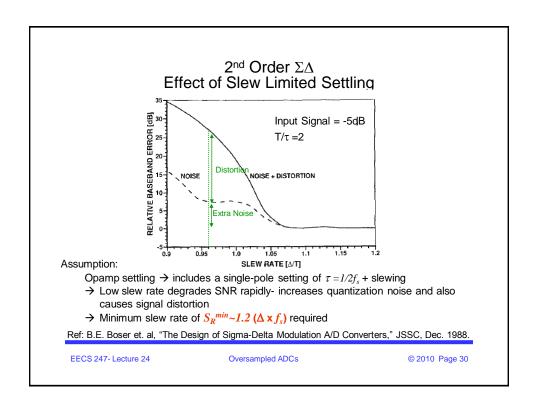


 $ightarrow \Sigma \Delta$ does not require high opamp bandwidth $T/\tau > 2$ or $f_u > 2f_s$ adequate Note: Bandwidth requirements significantly more relaxed compared to Nyquist rate ADCs Ref: B.E. Boser et. al, "The Design of Sigma-Delta Modulation A/D Converters," JSSC, Dec. 1988.

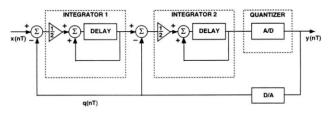
EECS 247- Lecture 24

Oversampled ADCs





$2^{\rm nd}$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Application



- In Ref.: 5V supply, $\Delta=4$ Vp-p-d, $f_s=12.8$ MHz \rightarrow M=256 \rightarrow theoretical quantization noise @-110dB
- Minimum capacitor values computed based on -104dB noise wrt maximum signal
 - \rightarrow Max. inband KT/C noise = $7\mu Vrms$ (thermal noise dominates \rightarrow provide dithering & reduce limit cycle oscillations)
 - → $C1 = (2kT)/(M v_n^2) = 1pF$ C2 = 2C1

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 31

- Class A/B type opamp → High slew-rate
- S.C. common-mode feedback
- Input referred noise (both thermal and 1/f) important for high resolution performance
- Minimum required DC gain> Volume M=256, usually DC gain designed to be much higher to suppress nonlinearities (particularly, for class A/B amps)
- Minimum required slew rate of 1.2(∆.f_s) → 65V/usec
- Minimum opamp settling time constant → 1/2fs~30nsec

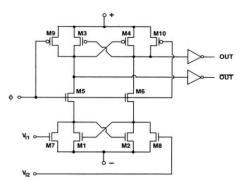
Vout-

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

- Comparator → simple design
- Maximum acceptable hysteresis or offset (based on analysis) → ∆/25 ~ 160mV
- Have to make sure adequate speed for the chosen sampling freq.
- →Since offset requirement not stringent→ No preamp needed, basically a latch with reset



Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 33

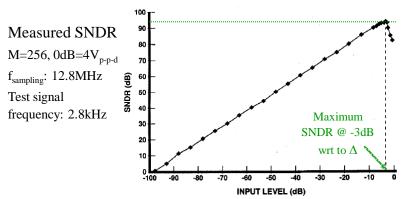
$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Subcircuit Performance

Subcircuit Performance			esign Factor
Operational Amplifier DC gain Unity-gain frequency Slew rate Linear output range Sampling rate	67 dB 50 MHz 350 V/µsec 6 V 12.8 MHz	minimum required DC Gain 48dB (compensates non-linear open-loc Unity-gain freq =2fs=25MHz Slew rate = $65V/usec$ Output range $1.7\Delta=6.8V!$	x8 pp gain) x2 x5
Integrator Settling time constant	7.25 nsec	Settling time constant= 30nsec	x4
Comparator Offset	13 mV	Comparator offset 160mV	x12

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs



Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 35

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications

Measured Performance Summary

(Does Not Include Decimator)

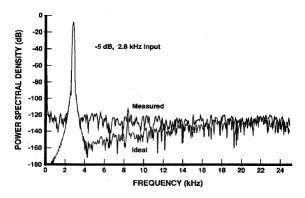
Dynamic Range	98 dB (16 b)
Peak SNDR	94 dB
Sampling Rate	12.8 MHz
Oversampling Ratio	256
Output Rate	50 kHz
Signal Band	23 kHz
Differential Input Range	4 V
Supply Voltage	5 V
Power Supply Rejection	60 dB
Power Dissipation	13.8 mW
Area	0.39 mm^2
Technology	1-µm CMOS
1 centrology	I MIII CIVIOS

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications



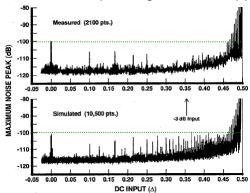
Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 37

${\bf 2}^{\rm nd}\ {\bf O}{\bf r}{\bf d}{\bf e}{\bf r}\ \Sigma\Delta$ Implementation Example: Digital Audio Applications



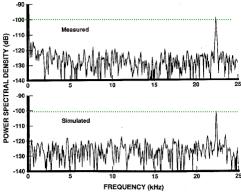
- → Measured & simulated in-band spurious tones as a function of DC input signal
- → Sampling rate=12.8MHz, M=256

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

$$2^{\rm nd}$$ Order $\Sigma\Delta$ Implementation Example: Digital Audio Applications



- → Measured & simulated worst-case noise tone @ DC input of 0.00088∆
- → Both indicate maximum tone @ 22.5kHz around -100dB level

Ref: B. P. Brandt, et. al, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 39

Higher Order ΣΔ Modulator Dynamic Range

$$Y(z) = z^{-1}X(z) + (1-z^{-1})^{L}E(z)$$
, $L \to \Sigma \Delta$ order

$$\overline{S_X} = \frac{1}{2} \left(\frac{\Delta}{2}\right)^2$$
 sinusoidal input, $STF = 1$

$$\overline{S_Q} = \frac{\pi^{2L}}{2L+1} \frac{1}{M^{2L+1}} \frac{\Delta^2}{12}$$

$$\frac{\overline{S_X}}{\overline{S_Q}} = \frac{3(2L+1)}{2\pi^{2L}} M^{2L+1}$$

$$DR = 10\log\left[\frac{3(2L+1)}{2\pi^{2L}}M^{2L+1}\right]$$

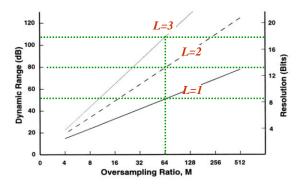
$$DR = 10\log\left[\frac{3(2L+1)}{2\pi^{2L}}\right] + (2L+1)\times10\times\log M$$

2X increase in M \rightarrow (6L+3)dB or (L+0.5)-bit increase in DR

EECS 247- Lecture 24

Oversampled ADCs

ΣΔ Modulator Dynamic Range As a Function of Modulator Order



• Potential stability issues for L >2

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 41

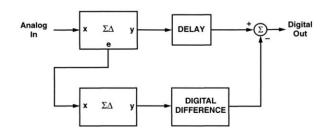
Higher Order $\Sigma\Delta$ Modulators

- Extending $\Sigma\Delta$ Modulators to higher orders by adding integrators in the forward path (similar to 2nd order)
 - → Issues with stability
- Two different architectural approaches used to implement $\Sigma\Delta$ modulators with order >2
 - 1. Cascade of lower order modulators (multi-stage)
 - 2. Single-loop single-quantizer modulators with multi-order filtering in the forward path

EECS 247- Lecture 24

Oversampled ADCs

Higher Order $\Sigma\Delta$ Modulators (1) Cascade of 2-Stages $\Sigma\Delta$ Modulators



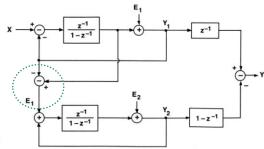
- Main $\Sigma\Delta$ quantizes the signal
- The 1st stage quantization error is then quantized by the 2nd quantizer
- The quantized error is then subtracted from the results in the digital domain

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 43

2^{nd} Order (1-1) Cascaded $\Sigma\Delta$ Modulators



$$Y_1(z) = z^{-1}X(z) + (1 - z^{-1})E_1(z)$$

$$Y_2(z) = z^{-1}E_1(z) + (1 - z^{-1})E_2(z)$$

$$Y(z) = z^{-1}Y_1(z) - (1 - z^{-1})Y_2(z)$$

$$=z^{-2}X(z)+z^{-1}(1-z^{-1})E_1(z)-z^{-1}(1-z^{-1})E_1(z)\\ -(1-z^{-1})^2E_2(z)$$

$$Y(z) = z^{-2}X(z) - (1 - z^{-1})^2E_2(z)$$

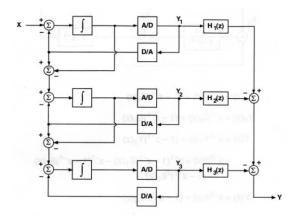
2nd order noise shaping

EECS 247- Lecture 24

Oversampled ADCs

$3^{\rm rd}$ Order Cascaded $\Sigma\Delta$ Modulators (a) Cascade of 1-1-1 $\Sigma\Delta$ s

- Can implement 3rd order noise shaping with 1-1-1
- This is also called MASH (multi-stage noise shaping)



EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 45

3rd Order Cascaded $\Sigma\Delta$ Modulators (b) Cascade of 2-1 $\Sigma\Delta$ s

Advantages of 2-1 cascade compared to 1-1-1-:

- Low sensitivity to matching precision of analog/digital paths
- Low spurious limit cycle tone levels
- · No potential instability

 $Y_1(z) = z^{-2}X(z) + (1 - z^{-1})^2 E_1(z)$

 $Y_2(z) = z^{-1} E_1(z) + (1 - z^{-1}) E_2(z)$

 $Y(z) = z^{-1}Y_1(z) - (1 - z^{-1})^2Y_2(z)$

= $z^{-3}X(z) + z^{-1}(1 - z^{-1})^2E_1(z) - z^{-1}(1 - z^{-1})^2E_1(z)$

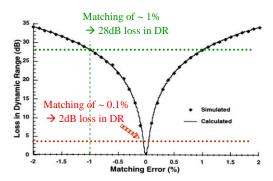
 $-(1-z^{-1})^3E_2(z)$

3rd order noise shaping $Y(z) = z^{-3}X(z) - (1 - z^{-1})^3 E_2(z)$

EECS 247- Lecture 24

Oversampled ADCs

Sensitivity of Cascade of (1-1-1) $\;\Sigma\Delta$ Modulators to Matching of Analog & Digital Paths

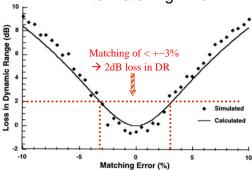


EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 47

Sensitivity of Cascade of (2-1) $\Sigma\Delta$ Modulators to Matching Error



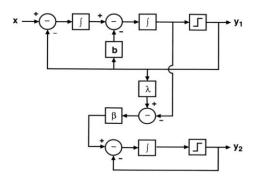
Main advantage of 2-1 cascade compared to 1-1-1 topology:

• Low sensitivity to matching of analog/digital paths (in excess of one order of magnitude less sensitive compared to (1-1-1)!)

EECS 247- Lecture 24

Oversampled ADCs

Example: 2-1 Cascaded $\Sigma\Delta$ Modulators



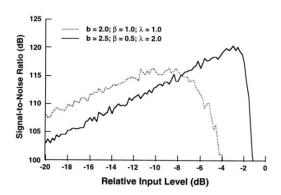
Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic range," *IEEE Journal of Solid-State Circuits*, vol. 29, pp. 193 - 202, March 1994.

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 49

2-1 Cascaded $\Sigma\Delta$ Modulators

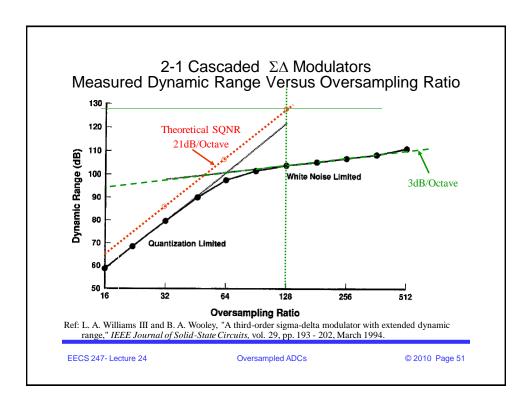


Effect of gain parameters on signal-to-noise ratio

Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic range," *IEEE Journal of Solid-State Circuits*, vol. 29, pp. 193 - 202, March 1994.

EECS 247- Lecture 24

Oversampled ADCs



Comparison of 2nd order & Cascaded (2-1) $\Sigma\Delta$ Modulator Test Results

Digital Audio Application, $f_N = 44.1kHz$				
(Does not include Decimator)				
Reference	Brandt ,JSSC 4/91	Williams, JSSC 3/94		
Architecture	2 nd order	(2+1) Order		
Dynamic Range	98dB (16-bits)	104dB (17-bits)		
Peak SNDR	94dB	98dB		
Oversampling rate	256 (theoretical → SQNR=109dB, 18bit)	128 (theoretical → SQNR=128dB, 21bit!)		
Differential input	4Vppd	8Vppd		
range	5V supply	5V supply		
Power Dissipation	13.8mW	47.2mW		
Active Area	0.39mm ² (1μ tech.)	5.2mm ² (1μ tech.)		

EECS 247- Lecture 24

Oversampled ADCs

Higher Order $\Sigma\Delta$ Modulators (1) Cascaded Modulators Summary

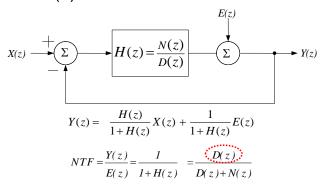
- Cascade two or more stable ΣΔ stages
- Quantization error of each stage is quantized by the succeeding stage/s and subtracted digitally
- Order of noise shaping equals sum of the orders of the stages
- Quantization noise cancellation depends on the precision of analog/digital signal paths
- Quantization noise further randomized → less limit cycle oscillation problems
- · Typically, no potential instability

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 53

Higher Order Lowpass $\Sigma\Delta$ Modulators (2)Forward Path Multi-Order Filter



- Zeros of NTF (poles of H(z)) can be positioned to minimize baseband noise spectrum
- Approach: Design NTF first and solve for H(z)
- Main issue → Ensuring stability for 3rd and higher orders

EECS 247- Lecture 24

Oversampled ADCs

5^{th} -order $\Sigma\Delta$ Modulator Design

- Procedure
 - Establish requirements
 - Design noise-transfer function, NTF
 - Determine loop-filter, H
 - Synthesize filter
 - Evaluate performance,
 - Establish stability criteria
 - Voltage scaling
 - Effect of component non-idealities

Ref: R. W. Adams and R. Schreier, "Stability Theory for $\Delta\Sigma$ Modulators," in Delta-Sigma Data Converters- S. Norsworthy et al. (eds), IEEE Press, 1997

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 55

Example: Modulator Specification

Example: Audio ADC

 Dynamic range 	DR	18 Bits
 Signal bandwidth 	В	20 kHz
 Nyquist frequency 	f_N	44.1 kHz
 Modulator order 	L	5
 Oversampling ratio 	$M = f_s/f_N$	64
Committee from the property	£	0.000 MILI

Sampling frequency f_s
 2.822 MHz

The order L and oversampling ratio M are chosen based on

- SQNR > 120dB

EECS 247- Lecture 24

Oversampled ADCs

Noise Transfer Function, NTF(z)

% stop-band attenuation Rstop=80dB, L=5 ...
L=5;
Rstop = 80;
B=20000;
[b,a] = cheby2(L, Rstop, B, 'high');

NTF = filt(b, a, ...);

Chebychev II filter chosen
→ zeros in stop-band

Chebychev II filter chosen
→ requency [Hz]

EECS 247- Lecture 24

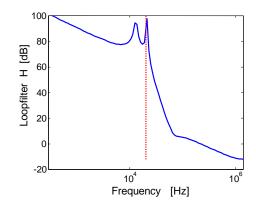
Oversampled ADCs

© 2010 Page 57

Loop-Filter Characteristics H(z)

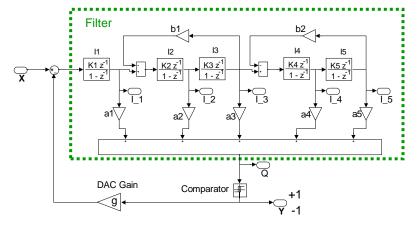
$$NTF = \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$
$$\rightarrow H(z) = \frac{1}{NTF} - 1$$

Note: For 1st order $\Sigma\Delta$ an integrator is used instead of the high order filter shown



EECS 247- Lecture 24

Oversampled ADCs



EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 59

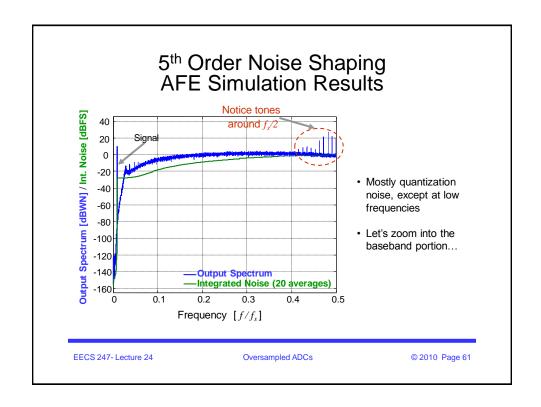
Filter Coefficients

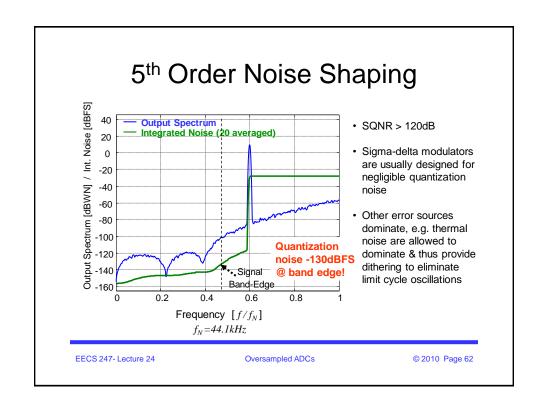
a1=1;	k1=1;	b1=1/1024;
a2=1/2;	k2=1;	b2=1/16-1/64;
a3=1/4;	k3=1/2;	
a4=1/8;	k4=1/4;	
a5=1/8:	k5=1/8:	$\alpha = 1$:

 Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, "Phase Equalization System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections", U.S. Patent 5061925, 1990, figure 3 and table 1

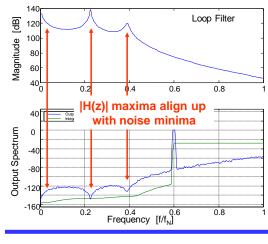
EECS 247- Lecture 24

Oversampled ADCs





In-Band Noise Shaping



- · Lot's of gain in the loop filter pass-band
- · Forward path filter not necessarily stable!
- · Remember that:
 - ✓NTF ~ 1/H→ small within passband since H is large
 - ✓ STF=H/(1+H) → ~1 within passband

EECS 247- Lecture 24

Oversampled ADCs

© 2010 Page 63

Stability Analysis



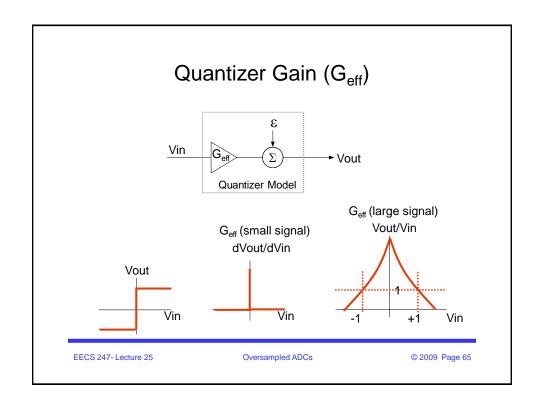
- Approach: linearize quantizer and use linear system theory!
- One way of performing stability analysis → use RLocus in Matlab with H(z) as argument and Geff as variable
- Effective quantizer gain

$$G_{eff}^2 = \overline{y^2} / q^2$$

• Can obtain $G_{\rm eff}$ from simulation Ref: R. W. Adams and R. Schreier, "Stability Theory for $\Delta\Sigma$ Modulators," in Delta-Sigma Data Converters- S. Norsworthy et al. (eds), IEEE Press, 1997

EECS 247- Lecture 25

Oversampled ADCs



Stability Analysis

$$STF = \frac{G \cdot H(z)}{1 + G \cdot H(z)}$$

$$H(z) = \frac{N(z)}{D(z)}$$

$$\to STF = \frac{G \cdot N(z)}{D(z) + G \cdot N(z)}$$

- Zeros of STF same as zeros of H(z)
- · Poles of STF vary with G
- For G=small (no feedback) poles of the STF same as poles of H(z)
- For G=large, poles of STF move towards zeros of H(z)
- Draw root-locus: for G values for which poles move to LHP (s-plane) or inside unit circle (z-plane) → system is stable

