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EE247
Lecture 25

Oversampled ADCs (continued)

– Higher order SD modulators 

• Last lecture Cascaded SD modulators (MASH) 

(continued)

• Single-loop single-quantizer modulators with multi-order 

filtering in the forward path

–Example: 5th order Lowpass SD 

• Modeling

• Noise shaping

• Effect of various nonidealities on the SD performance

• Bandpass SD modulators 
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EE247
Lecture 25

•Administrative

–Final exam: 
• Date:      Tues. Dec. 14th

• Time:      8am-11am

• Location: 299 Cory (change of location)

• Closed book/course notes

• No calculators/cell phones/PDAs/Computers

• You can bring two 8x11 paper with your own notes

• Final exam covers the entire course material unless 

specified
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EE247
Lecture 25

Project:
– Project reports due today

– Please make an appointment with the instructor via sign-up 
sheet for a 20 minute meeting per team for Wed. Dec. 1th

– Prepare to give a 10 minute presentation regarding the 
project during the class period on Dec. 2nd /Dec. 7th 

• Highlight the important aspects of your approach towards the 
implementation of the ADC – teach us

• If the project is joint effort, both team members should present

• Email your PowerPoint presentation files to the instructor two 
hours prior to class to be put in one presentation file in order to 
conserve class time
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Example: 2-1 Cascaded  SD Modulators

Accuracy of < +-3%

 2dB loss in DR

Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic 
range," IEEE Journal of Solid-State Circuits, vol. 29, pp. 193 - 202, March 1994. 

•Various combinations of variables b, l, b can be used

•Authors have explored combination resulting in max. DR
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2-1 Cascaded  SD Modulators

Effect of gain parameters on signal-to-noise ratio

Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic 
range," IEEE Journal of Solid-State Circuits, vol. 29, pp. 193 - 202, March 1994. 
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2-1 Cascaded  SD Modulators
Measured Dynamic Range Versus Oversampling Ratio

Ref: L. A. Williams III and B. A. Wooley, "A third-order sigma-delta modulator with extended dynamic 
range," IEEE Journal of Solid-State Circuits, vol. 29, pp. 193 - 202, March 1994. 

3dB/Octave

Theoretical SQNR

21dB/Octave
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Comparison of 2nd order & Cascaded (2-1) SD Modulator
Test Results

Digital Audio Application, fN =44.1kHz

(Does not include Decimator)

Reference Brandt ,JSSC 4/91 Williams, JSSC 3/94

Architecture 2nd order (2+1) Order

Dynamic Range 98dB (16-bits) 104dB (17-bits)

Peak SNDR 94dB 98dB

Oversampling rate 256 (theoretical 

SQNR=109dB, 18bit)

128 (theoretical 

SQNR=128dB, 21bit!)

Differential input 

range 

4Vppd

5V supply

8Vppd

5V supply

Power Dissipation 13.8mW 47.2mW

Active Area 0.39mm2 (1m tech.) 5.2mm2 (1m tech.)
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Higher Order SD Modulators
(1) Cascaded Modulators Summary

• Cascade two or more stable SD stages

• Quantization error of each stage is quantized by the 
succeeding stage/s and subtracted digitally 

• Order of noise shaping equals sum of the orders of 
the stages

• Quantization noise cancellation depends on the 
precision of analog/digital signal paths

• Quantization noise further randomized  less limit 
cycle oscillation problems

• Typically, no potential instability
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Higher Order Lowpass SD Modulators
(2) Forward Path Multi-Order Filter

• Zeros of NTF (poles of H(z)) can be positioned to minimize baseband noise spectrum

• Approach: Design NTF first and solve for H(z)

• Main issue  Ensuring stability for 3rd and higher orders
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High Order
SD Modulator Design

• Procedure
– Establish requirements & determine order

– Design noise-transfer function, NTF

– Determine loop-filter, H

– Synthesize filter

– Evaluate performance 

– Establish stability criteria

– Node voltage scaling for maximum DR

– Effect of component non-idealities

Ref: R. W. Adams and R. Schreier, “Stability Theory for DS Modulators,” in Delta-Sigma Data 
Converters- S. Norsworthy et al. (eds), IEEE Press, 1997
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Example: Modulator Specification

• Example: Audio ADC

– Dynamic range DR 18 Bits

– Signal bandwidth B 20 kHz

– Nyquist frequency fN 44.1 kHz

– Modulator order L 5

– Oversampling ratio M = fs/fN 64

– Sampling frequency fs 2.822 MHz

• The order L and oversampling ratio M are chosen 

based on
– SQNR > 120dB
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Noise Transfer Function, NTF(z)

% stop-band attenuation Rstop=80dB, L=5 ... 

L=5; 

Rstop = 80;

B=20000; 

[b,a] = cheby2(L, Rstop, B, 'high');

NTF = filt(b, a, ...);
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Chebychev II filter chosen

 zeros in stop-band
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Loop-Filter Characteristics
H(z)
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Note: For 1st order SD an 

integrator is used instead 

of the high order filter 

shown
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Modulator Topology
Simulation Model
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Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, “Phase Equalization 

System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections”, 

U.S. Patent 5061925, 1990, figure 3 and table 1
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Filter Coefficients

a1=1;

a2=1/2;

a3=1/4;

a4=1/8;

a5=1/8;

k1=1;

k2=1;

k3=1/2;

k4=1/4;

k5=1/8;

b1=1/1024;

b2=1/16-1/64;

g =1;

Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, “Phase Equalization 

System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections”, 

U.S. Patent 5061925, 1990, figure 3 and table 1
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5th Order Noise Shaping
AFE Simulation Results

• Mostly quantization 

noise, except at low 

frequencies

• Let’s zoom into the 

baseband portion…
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5th Order Noise Shaping
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fN =44.1kHz

• SQNR > 120dB

• Sigma-delta modulators 

are usually designed for 

negligible quantization 

noise

• Other error sources 

dominate, e.g. thermal 

noise allowed to 

dominate & thus provide 

dithering to eliminate 

limit cycle oscillations

EECS 247- Lecture 25                                        Oversampled ADCs © 2010  Page 18

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

M
a
g
n
it
u
d
e
  

[d
B

] Loop Filter

0 0.2 0.4 0.6 0.8 1
-100

0

100

200

300

400

Frequency  [f/fN]

P
h

a
s
e
  
[d

e
g

re
e
s
]

In-Band Noise Shaping

• Lot’s of gain in the loop filter 

pass-band

• Forward path filter not 

necessarily stable!

• Remember that:

NTF ~ 1/H small 

within passband since 

H is large

STF=H/(1+H)  ~1 

within passband
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with noise minima
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Stability Analysis

• Approach: linearize quantizer and use linear system theory!

• Effective quantizer gain

• One way of performing stability analysis use RLocus in Matlab with 

H(z) as argument and Geff as variable

• Can obtain Geff from simulation

2
2

2
eff

y
G

q


H(z)S S

Quantizer Model

e(kT)

x(kT)
y(kT)Geff

q(kT)

Ref: R. W. Adams and R. Schreier, “Stability Theory for DS Modulators,” in Delta-Sigma Data 
Converters- S. Norsworthy et al. (eds), IEEE Press, 1997
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Quantizer Gain (Geff)

S

Quantizer Model

e

VoutGeff
Vin

Geff (large signal)

Vout

Vin -1              +1

1

Vin

Geff (small signal) Vout/Vin

dVout/dVin

Vin
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Stability Analysis

• Zeros of STF same as zeros of H(z)

• Poles of STF vary with G

• For G=small (no feedback) poles of the STF same as poles of H(z)

• For G=large,  poles of STF move towards zeros of H(z)

• Draw root-locus: for G values for which poles move to LHP (s-plane) or 

inside unit circle (z-plane)  system is stable
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Modulator z-Plane Root-Locus

• As Geff increases, poles of STF 

move from 

• poles of H(z) (Geff = 0) to 

• zeros of H(z) (Geff = ∞)

• Pole-locations inside unit-circle 

correspond to stable STF and 

NTF

• Need Geff > 0.45 for stability

Geff = 0.45

z-Plane Root Locus
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– Note: Final exam does NOT include Root Locus
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• Large inputs  comparator 

input grows

• Output is fixed (±1)

 Geff drops

modulator unstable for 

large inputs

• Solution:

• Limit input amplitude

• Detect instability (long 

sequence of +1 or -1) 

and reset integrators

• Be ware that signals 

grow slowly for nearly 

stable systems  use 

long simulations

Effective Quantizer Gain, Geff
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Internal Node Voltages

• Internal signal peak 

amplitudes are weak 

function of input level 

(except near overload)

• Maximum peak-to-peak 

voltage swing approach 

+-10V!  Exceed supply 

voltage!

• Solution:

• Node scaling based 

on max. signal 

handling capability of 

integrators

Integrator outputs

Quantizer input
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Node Scaling Example:
3rd Integrator Output Voltage Scaled by a

K3 * a, b1 /a, a3 / a, K4 / a, b2 * a

Vnew=Vold* a
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Node Voltage Scaling
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a=1/10



k1=1/10;

k2=1;

k3=1/4;

k4=1/4;

k5=1/8;

a1=   1; 

a2=1/2;

a3=1/2; 

a4=1/4;

a5=1/4;

b1=1/512;

b2=1/16-1/64;

g  =1;

• Integrator output range reasonable for new parameters

• But: maximum input signal limited to -5dB (-7dB with safety) – fix?
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Input Range Scaling

Increasing the DAC levels by using higher value for g reduces the 

analog to digital conversion gain:

Increasing VIN & g by the same factor leaves 1-Bit data unchanged

gzgH

zH

zV

zD

IN

OUT 1

)(1

)(

)(

)(





Loop Filter
H(z)

SVIN
DOUT

+1 or -1

Comparator

g

EECS 247- Lecture 25                                        Oversampled ADCs © 2010  Page 28

Scaled Stage 1 Model

g modified:

From 1 to 2.5;

Overload 

input level 

shifted up by 

~8dB
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Stability Verification
Post Scaling

Note: Operating 

the AFE at 

signals <0dBV 

ensures system 

stability
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5th Order Modulator
Final Parameter Values

±2.5V

Stable input range with margin ~ ±1V
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Summary

• Stage 1 model verified –

stable and meets SQNR specification

• Stage 2 issues in 5th order SD modulator

– DC inputs

– Spurious tones

– Dither

– kT/C noise
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Input: 0.1V, sinusoid

215 point DFT
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Note: Large spurious 

tones

in the vicinity of fs/2

Let us check whether 

tones appear 

inband?

Tones in the vicinity of  fs/2 exceed input level
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In-Band quantization noise:

–120dB !

Note: 

No in-band tones!

While Large spurious 
tones appear in the 
vicinity of fs /2
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Note: Required 

digital filter overall 

out-of-band 

attenuation 

function of tones 

in the vicinity of 

fs/2 & in-band 

quantization noise

150dB stopband attenuation needed

to attenuate unwanted fs/2 components

down to the in-band quantization noise level
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Out-of-Band vs In-Band Signals

• A digital (low-pass) filter with suitable coefficient 
precision can eliminate out-of-band quantization noise

• No filter can attenuate unwanted in-band components 
without attenuating the signal

• Have to make sure that the components at fs/2-fin will 
not “mix” down to the signal band

– One possibility: Since DAC is a multiplexer/multiplier 
small portion of output signal in the vicinity of fs/2-fin
could be aliased down to the band of interest.

– Remedy: Good isolation between DAC Vref and AFE 
output
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SD Tones Generated by Small DC Input Signals

5mV DC input

(VDAC 2.5V)

Simulation technique:

A random 1st sample 

randomizes the noise 

from DC input and 

enables averaging. 

Otherwise the small 

tones will not become 

visible.
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Limit Cycles

• Representing a DC term with a –1/+1 pattern … e.g.

• Spectrum:
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Limit Cycles
• The frequency of the tones are indeed quite predictable

– Fundamental

– Tone velocity (useful for debugging)

– Note: For digital audio in this case DC signal>20mV generates tone 

with fd >24kHz out-of-band  no problem
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Dither

• DC inputs can be represented by many possible bit 
patterns

• Including some that are random (non-periodic) but 
still average to the desired DC input

• The spectrum of a non-periodic sequence has no 
spurious tones

• How can we get a SD modulator to produce such 
“randomized” sequences?
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Dither

• The target DR for our audio SD is 18 Bits, or 113dB

• Designed SQNR~-120dB allows thermal noise to 

dominate at -115dB level

• Let’s choose the sampling capacitor such that it limits 

the dynamic range:
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5mV DC input

• Thermal noise added 

at the input of the 1st

integrator

• In-band spurious 

tones disappear

• Note: they are not 

just buried

• How can we tell?
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kT/C Noise

• So far we’ve looked at noise added to the 
input of the SD modulator, which is also the 
input of the first integrator

• Now let’s add noise also to the input of the 
second integrator

• Let’s assume a 1/16 sampling capacitor value 
for the 2nd integrator wrt the 1st integrator
– This gives 4mV rms noise 
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kT/C Noise

• 5mV DC input 

• Noise from 2nd integrator 

smaller than 1st integrator 

noise shaped

• Why?
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Effect of Integrator kT/C Noise

• Noise from 1st integrator is referred directly to the input

• Noise from 2nd integrator is first-order noise shaped

• Noise from subsequent integrators  attenuated even further

 Especially for high oversampling ratios, only the first 1 or 2 
integrators add significant thermal noise. This is true also for other 
imperfections (similar to pipelined ADCs!)
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Summary

• The model can drive almost all capacitor 
sizing decisions based on:
– Gain scaling

– kT/C noise

– Dither

• Dither quite effective in the elimination of 
native in-band tones

• Extremely clean & well-isolated Vref is 
required for high-dynamic range applications 
e.g. digital audio
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Bandpass DS Modulator

+

_

vIN

dOUT



DAC

• Replace the integrator in 1st order lowpass SD with a  

resonator

 2nd order bandpass SD 

Resonator




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Bandpass DS Modulator
Example: 6th Order  

Measured output 

for a bandpass SD 
(prior to digital 
filtering)

Key Point:

NTF notch 
type 
shape

STF bandpass 
shape

Ref: 

Paolo Cusinato, et. al, “A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB 
Dynamic Range “, IEEE JSSCC, VOL. 36, NO. 4, APRIL 2001 

Input SinusoidQuantization 

Noise
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Bandpass SD Characteristics

• Oversampling ratio defined as fs /2B where B
= signal bandwidth

• Typically, sampling frequency is chosen to be 
fs=4xfcenter where fcenter bandpass filter center 
frequency

• STF has a bandpass shape while NTF has a 
notch or band-reject shape

• To achieve same resolution as lowpass, need 
twice as many integrators
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Bandpass SD Modulator Dynamic Range
As a Function of Modulator Order (K)

• Bandpass SD resolution for order K is the same as lowpass 
SD resolution with order L= K/2

K=2

9dB/Octave

K=4

15dB/Octave

K=6

21dB/Octave
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Example: Sixth-Order Bandpass SD Modulator

Ref: 

Paolo Cusinato, et. al, “A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB 
Dynamic Range “, IEEE JSSCC, VOL. 36, NO. 4, APRIL 2001 

Simulated noise transfer function Simulated signal transfer function
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Example: Sixth-Order Bandpass SD Modulator

Ref: 

Paolo Cusinato, et. al, “A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass Modulator with 74-dB 
Dynamic Range “, IEEE JSSCC, VOL. 36, NO. 4, APRIL 2001 

Features & Measured Performance 
Summary

fs=4xfcenter

B

OSR=fs /2B
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Summary
Oversampled ADCs

• Noise shaping utilized to reduce baseband quantization noise 
power

• Reduced precision requirement for analog building blocks 
compared to Nyquist rate converters

• Relaxed transition band requirements for analog anti-aliasing 
filters due to oversampling

• Takes advantage of low cost, low power digital filtering 

• Speed is traded for resolution

• Typically used for lower frequency applications compared to 
Nyquist rate ADCs
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Material Covered in EE247

• Filters 
– Continuous-time filters

• Biquads & ladder type filters

• Opamp-RC, Opamp-MOSFET-C, gm-C filters

• Automatic frequency tuning

– Switched capacitor (SC) filters

• Data Converters

– D/A converter architectures

– A/D converter

• Nyquist rate ADC- Flash, Interpolating & Folding, 
Pipeline ADCs,….

• Self-calibration techniques

• Oversampled converters
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E.E. Circuit Courses
vs. Frequency Range

DC
500MHz

Baseband

IF Band

RF Band

455kHz 100MHz

500kHz 100GHz

10.7MHz 80MHz
AM Radio FM Radio Cellular Phone

EE240, EE247

EE242
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