
EECS 247                                                        Lecture 3: Filters © 2010 H.K.  Page 1

EE247

Administrative

– Homework #1 will be posted on EE247 site 

and is due Sept. 9th

– Office hours held @ 201 Cory Hall:

• Tues. and Thurs.: 4 to 5pm
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EE247 

Lecture 3
• Active Filters

– Active biquads-

–How to build higher order filters?

• Integrator-based filters

– Signal flowgraph concept

– First order integrator-based filter

– Second order integrator-based filter & biquads

– High order & high Q filters

• Cascaded biquads & first order filters

– Cascaded biquad sensitivity to component mismatch

• Ladder type filters
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Filters
2nd Order Transfer Functions (Biquads)

• Biquadratic (2nd order) transfer function:
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Biquad Complex Poles

Distance from origin in s-plane:
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Example

2nd Order Butterworth
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Implementation of Biquads

• Passive RC: only real poles can’t implement complex conjugate 
poles

• Terminated LC

– Low power, since it is passive

– Only fundamental noise sources  load and source resistance

– As previously analyzed, not feasible in the monolithic form for      
f <350MHz

• Active Biquads

– Many topologies can be found in filter textbooks! 

– Widely used topologies:

• Single-opamp biquad: Sallen-Key

• Multi-opamp biquad: Tow-Thomas

• Integrator based biquads
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Active Biquad 

Sallen-Key Low-Pass Filter

• Single gain element

• Can be implemented both in discrete & monolithic form

• “Parasitic sensitive”

• Versions for LPF, HPF, BP, …

 Advantage: Only one opamp used 

 Disadvantage: Sensitive to parasitic – all pole no finite zeros
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Addition of Imaginary Axis Zeros

• Sharpen transition band

• Can “notch out” interference

– Band-reject filter

• High-pass  filter (HPF)

Note: Always represent transfer functions as a product of a gain term, 

poles, and zeros (pairs if complex). Then all coefficients have a 

physical meaning, and readily identifiable units.
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Imaginary Zeros

• Zeros substantially sharpen transition band

• At the expense of reduced stop-band attenuation at 

high frequencies
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Moving the Zeros
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Tow-Thomas Active Biquad

Ref: P. E. Fleischer and J. Tow, “Design Formulas for biquad active filters using three 

operational amplifiers,” Proc. IEEE, vol. 61, pp. 662-3, May 1973.

• Parasitic insensitive

• Multiple outputs
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Frequency Response
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• Vo2 implements a general biquad section with arbitrary poles and zeros

• Vo1 and Vo3 realize the same poles but are limited to at most one finite zero

• Possible to use combination of 3 outputs 
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Component Values
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Higher-Order Filters in the Integrated Form

• One way of building higher-order filters (n>2) is via cascade of 2nd

order biquads & 1st order , e.g. Sallen-Key,or Tow-Thomas, & RC

2nd order

Filter 
……

Nx 2nd order sections  Filter order:    n=2N  

1                          2                                                 N

Cascade of 1st and 2nd order filters:

 Easy to implement

 Highly sensitive to component mismatch -good for low Q filters only

 For high Q applications good alternative: Integrator-based ladder filters

2nd order

Filter 
1st or 2nd order

Filter 
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Integrator Based Filters

• Main building block for this category of filters             

 Integrator

• By using signal flowgraph techniques                             

 Conventional RLC filter topologies can be 

converted to integrator based type filters

• How to design integrator based filters?

– Introduction to signal flowgraph techniques

– 1st order integrator based filter

– 2nd order integrator based filter

– High order and high Q filters
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What is a Signal Flowgraph (SFG)?

• SFG  Topological network representation 

consisting of nodes & branches- used to convert one 

form of network to a more suitable form (e.g. passive 

RLC filters to integrator based filters)

• Any network described by a set of linear differential 

equations can be expressed in SFG form

• For a given network, many different SFGs exists 

• Choice of a particular SFG is based on practical 

considerations such as type of available components

*Ref: W.Heinlein & W. Holmes, “Active Filters for Integrated Circuits”, Prentice Hall, Chap. 8, 1974.  
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What is a Signal Flowgraph (SFG)?

• Signal flowgraph technique consist of nodes & branches:

– Nodes represent variables (V & I in our case) 

– Branches represent transfer functions (we will call the 

transfer function branch multiplication factor or BMF)

• To convert a network to its SFG form, KCL & KVL is used to 

derive state space description

• Simple example:

Circuit State-space description SFG  

Z
Z

VoinI
inI

Vo
I Z Vin o 
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Signal Flowgraph (SFG)

Examples

1
SL

Circuit State-space description SFG  
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Useful Signal Flowgraph (SFG) Rules

1V
a

2V

b
a+b

1V
2V

a.b
1V

2V
3Va b

1V 2V

a.V1+b.V1=V2 (a+b).V1=V2

a.V1=V3  (1)

b.V3=V2 (2)

Substituting for V3 from (1) in (2) (a.b).V1=V2

• Two parallel branches can be replaced by a single branch with overall BMF equal to 

sum of two BMFs

• A node with only one incoming branch & one outgoing branch can be eliminated & 

replaced by a single branch with BMF equal to the product of the two BMFs
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Useful Signal Flowgraph (SFG) Rules

• An intermediate node can be multiplied by a factor (k). BMFs for incoming

branches have to be multiplied by k and outgoing branches divided by k

3V

a b
1V 2V k.a b/k

1V 2V

3.Vk

a.V1=V3 (1)

b.V3=V2 (2)

Multiply both sides of (1) by k

(a.k) . V1= k.V3 (1)

Divide & multiply left side of (2) by k

(b/k) .  k.V3  = V2 (2)
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Useful Signal Flowgraph (SFG) Rules

h
iV

2V a
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-1 -b

1
d

3V

• Simplifications can often be achieved by shifting or eliminating nodes

• Example: eliminating node V4

• A self-loop branch with BMF y can be eliminated by multiplying the BMF

of incoming branches by 1/(1-y)

V4
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Integrator Based Filters
1st Order LPF

• Conversion of simple lowpass RC filter to integrator-

based type by using signal flowgraph techniques

in

V 1o

s CV 1 R
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

oV

Rs

C
inV
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What is an Integrator?
Example: Single-Ended Opamp-RC Integrator

oV

C

inV

-

+

R a 

in
sC ,o o in o in

V 1 1
V V V , V V dt

R sRC RC
       

• Node x: since opamp has high gain Vx=-Vo /a 0

• Node x is at “virtual ground” 

 No voltage swing at Vx combined with high opamp input impedance 

 No input opamp current

Vx

IR

IC
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What is an Integrator?
Example: Single-Ended Opamp-RC Integrator

inV -

Note: Practical integrator in CMOS technology has input & output both in the 

form of voltage and not current Consideration for SFG derivation

oV

RC 
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in

1V
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1st Order LPF

Convert RC Prototype to Integrator Based Version

1. Start from circuit prototype-

Name voltages & currents for all components

2. Use KCL & KVL to derive state space description in such a way to have 
BMFs in the integrator form: 

 Capacitor voltage expressed as function of its current VCap.=f(ICap.)

 Inductor current as a function of its voltage IInd.=f(VInd.)

3. Use state space description to draw signal flowgraph (SFG) (see next 
page)

1I

oV

Rs

CinV

2I

1V 

CV


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Integrator Based Filters
First Order LPF

1I

oV

1

Rs

CinV

2I

1V 

1

Rs

1

sC

2I1I

CVinV 11 1V

• All voltages & currents  nodes of SFG

• Voltage nodes on top, corresponding 

current nodes below each voltage node

SFG
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V V V1 in C

1
V IC 2
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V Vo C
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I V1 1 Rs
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Normalize

• Since integrators  are the main building blocks require in & out signals 
in the form of voltage (not current) 

 Convert all currents to voltages by multiplying current nodes by a 
scaling resistance R*

 Corresponding BMFs should then be scaled accordingly
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1st Order Lowpass Filter SGF

Normalize

'
2V

*

1

sCR

oVinV 11 1V
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1st Order Lowpass Filter SGF

Synthesis

'
1V
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sC R
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First Order Integrator Based Filter

oV

inV
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+
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1st Order Filter 

Built with Opamp-RC Integrator

oV

inV

-
+


+

• Single-ended Opamp-RC integrator has a sign inversion from input to 
output 

 Convert SFG accordingly by modifying BMF

oV

inV

-



+
-

oV

'
in inV V 

+



+
-
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1st Order Filter 

Built with Opamp-RC Integrator

• To avoid requiring an additional opamp to perform summation at the 
input node:

oV

'
in inV V 

+



+
-

oV

'
inV


--
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1st Order Filter 

Built with Opamp-RC Integrator (continued)
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Opamp-RC 1st Order Filter 

Noise

2
n1v

 

k
22

o mm0
m 1
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i

2 2
1 2 2

2 2
n1 n2

2
o

v S ( f ) dfH ( f )

S ( f ) Noise  spectral  density  of i  noise  sou rce
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1 2 fRC

v v 4KTR f
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v 2
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 


  





 

oV

C

-

+

R

R

Typically,   increases as filter order increases

Identify noise sources (here it is resistors & opamp)

Find transfer function from each noise source

to the output (opamp noise next page)

2
n2v


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Opamp-RC Filter Noise

Opamp Contribution

2
n1v

2
opampv oV

C

-

+

R

R

• So far only the fundamental noise 

sources are considered

• In reality, noise associated with the 

opamp increases the overall noise

• For a well-designed filter opamp is 

designed such that noise contribution 

of opamp is negligible compared to 

other noise sources

• The bandwidth of the opamp affects 

the opamp noise contribution to the 

total noise

2
n2v
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Integrator Based Filter

2nd Order RLC Filter
oV

1

1

sL

R CinI
•State space description:

R L C o

C
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R
R
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C in R L
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V
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
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• Draw signal flowgraph (SFG)

SFG
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1 1
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2nd Order RLC Filter SGF

Normalize
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LV
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1

sL

• Convert currents to voltages by multiplying all current nodes by the scaling 

resistance R*
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x xI R V

'
2V
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inV

1*R
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2nd Order RLC Filter SGF

Synthesis
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Second Order Integrator Based Filter
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Second Order Bandpass Filter Noise
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• Find transfer function of each noise 

source to the output

• Integrate contribution of all noise 

sources

• Here it is assumed that opamps are 

noise free (not usually the case!)
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Typically,  increases as filter order increases

Note the noise power is directly proportion to Q
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Second Order Integrator Based Filter

Biquad
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Summary

Integrator Based Monolithic Filters

• Signal flowgraph techniques utilized to convert RLC networks to  

integrator based active filters

• Each reactive element (L& C) replaced by an integrator

• Fundamental noise limitation determined by integrating capacitor value:

– For lowpass filter:

– Bandpass filter: 

where  is a function of filter order and topology
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Higher Order Filters

• How do we build higher order filters?

– Cascade of biquads and 1st order sections
• Each complex conjugate pole built with a biquad and real pole 

with 1st order section

• Easy to implement

• In the case of high order high Q filters  highly sensitive to 
component mismatch

– Direct conversion of high order ladder type RLC filters
• SFG techniques used to perform exact conversion of ladder type 

filters to integrator based filters

• More complicated conversion process

• Much less sensitive to component mismatch compared to cascade 
of biquads
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Higher Order Filters
Cascade of Biquads

Example: LPF filter for CDMA cell phone baseband receiver 

• LPF with

– fpass = 650 kHz Rpass = 0.2 dB

– fstop = 750 kHz Rstop = 45 dB

– Assumption: Can compensate for phase distortion in the digital domain 

• Matlab used to find minimum order required  7th order Elliptic 

Filter

• Implementation with cascaded Biquads
Goal: Maximize dynamic range

– Pair poles and zeros

– In the cascade chain place lowest Q poles first and progress to higher Q 

poles moving towards the output node
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Overall Filter Frequency Response

Bode Diagram
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Pole-Zero Map (pzmap in Matlab)
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CDMA Filter

Built with Cascade of 1st and 2nd Order Sections

• 1st order filter implements the single real pole

• Each biquad implements a pair of complex conjugate poles and a 

pair of imaginary axis zeros

1st order

Filter 
Biquad2 Biquad4 Biquad3
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Biquad Response
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Individual Stage Magnitude Response
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Intermediate Outputs
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-10

Sensitivity to Relative Component Mismatch

Component variation in Biquad 4 relative to the rest 

(highest Q poles):

– Increase p4 by 1%

– Decrease z4 by 1%

High Q poles  High sensitivity

in Biquad realizations
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High Q & High Order Filters

• Cascade of biquads

– Highly sensitive to component mismatch  not suitable 

for implementation of high Q & high order filters

– Cascade of biquads only used in cases where required 

Q for all biquads <4 (e.g. filters for disk drives)

• Ladder type filters more appropriate for high Q & high 

order filters (next topic)

– Will show later Less sensitive to component mismatch 
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Ladder Type Filters

• Active ladder type filters 

– For simplicity, will start with all pole ladder type filters

• Convert to integrator based form- example shown

– Then will attend to high order ladder type filters 

incorporating zeros

• Implement the same 7th order elliptic filter in the form of 

ladder RLC with zeros

– Find level of sensitivity to component mismatch 

– Compare with cascade of biquads

• Convert to integrator based form utilizing SFG techniques

– Effect of integrator non-Idealities on filter frequency 

characteristics
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RLC Ladder Filters

Example: 5th Order Lowpass Filter

• Made of resistors, inductors, and capacitors

• Doubly terminated or singly terminated (with or w/o RL)

Rs

C1 C3

L2

C5

L4

inV
RL

oV

Doubly terminated LC ladder filters  Lowest sensitivity to 

component mismatch
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LC Ladder Filters

• First step in the design process is to find values for Ls and Cs 
based on specifications:

– Filter graphs & tables found in:

• A. Zverev, Handbook of filter synthesis, Wiley, 1967.

• A. B. Williams and F. J. Taylor, Electronic filter design, 3rd edition, McGraw-
Hill, 1995.

– CAD tools

• Matlab

• Spice

Rs

C1 C3

L2

C5

L4

inV
RL

oV
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LC Ladder Filter Design Example

Design a LPF with  maximally flat passband:

f-3dB = 10MHz,  fstop = 20MHz

Rs >27dB @ fstop
• Maximally flat passband   Butterworth

From: Williams and Taylor, p. 2-37
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• Find minimum filter order 

:

• Here standard graphs 

from filter books are 

used
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LC Ladder Filter Design Example

From: Williams and Taylor, p. 11.3

Find values for L & C from Table:

Note L &C values normalized to

-3dB =1

Denormalization:

Multiply all LNorm, CNorm by:

Lr = R/-3dB

Cr = 1/(RX-3dB )

R is the value of the source and 

termination resistor 

(choose both 1W for now)

Then: L= Lr xLNorm

C= Cr xCNorm
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LC Ladder Filter Design Example

From: Williams and Taylor, p. 11.3

Find values for L & C from Table:

Normalized values:

C1Norm =C5Norm =0.618

C3Norm = 2.0

L2Norm = L4Norm =1.618

Denormalization:

Since -3dB =2x10MHz

Lr = R/-3dB = 15.9 nH

Cr = 1/(RX-3dB )= 15.9 nF

R =1

cC1=C5=9.836nF, C3=31.83nF

cL2=L4=25.75nH


