EE247 Lecture 4

- Active ladder type filters
 - -For simplicity, will start with all pole ladder type filters
 - · Convert to integrator based form- example shown
 - Then will attend to high order ladder type filters incorporating zeros
 - Implement the same 7th order elliptic filter in the form of ladder RLC with zeros
 - Find level of sensitivity to component mismatch
 - Compare with cascade of biquads
 - Convert to integrator based form utilizing SFG techniques
 - Effect of integrator non-Idealities on filter frequency characteristics

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 1

Summary Lecture 3

- Active Filters
 - Active biquads
 - · Integrator-based filters
 - Signal flowgraph concept
 - First order integrator-based filter
 - Second order integrator-based filter & biquads
 - High order & high Q filters
 - · Cascaded biquads & first order filters
 - Cascaded biquad sensitivity to component mismatch
 - Ladder type filters

EECS 247

Lecture 4: Active Filters

RLC Ladder Filters Example: 5th Order Lowpass Filter

- Made of resistors, inductors, and capacitors
- Doubly terminated or singly terminated (with or w/o R_I)

Doubly terminated LC ladder filters → Lowest sensitivity to component mismatch

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 3

LC Ladder Filters

- First step in the design process is to find values for Ls and Cs based on specifications:
 - Filter graphs & tables found in:
 - A. Zverev, Handbook of filter synthesis, Wiley, 1967.
 - A. B. Williams and F. J. Taylor, Electronic filter design, 3rd edition, McGraw-Hill. 1995.
 - CAD tools
 - · Matlab.
 - Agilent ADS (includes Filter package > does the job of the tables)
 - Spice

EECS 247

Lecture 4: Active Filters

LC Ladder Filter Design Example

Design a LPF with maximally flat passband:

f-3dB = 10MHz, fstop = 20MHz

Rs >27dB @ fstop

- Maximally flat passband → Butterworth
 - Find minimum filter order
 - Here standard graphs from filter books are used

fstop/f-3dB = 2 Rs >27dB

From: Williams and Taylor, p. 2-37

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 5

Find values for L & C from Table:

TABLE 11-2 Butterworth LC Picment Values (

R C** L** C** L**

** 1.0000 0.0100 1.6100 2.0000 1.610

**Table 11-2 Butterworth LC Picment Values (

**Table 11-2 Butterw

Note L &C values normalized to

 $\omega_{-3dB} = 1$

Denormalization:

Multiply all L_{Norm}, C_{Norm} by:

 $L_r = R/\omega_{-3dB}$

 $C_r = 1/(RX\omega_{-3dB})$

R is the value of the source and termination resistor (choose both 1Ω for now)

Then: $L = L_r x L_{Norm}$ $C = C_r x C_{Norm}$

п	R,	Ca	L ₂	C_3	L.	C ₅	Le	C ₇
5	1.0000	0.6180	1.6180	2.0000	1.6180	0.6180	_	
		0.4416	1.0265	1.9095	1.7562	1.3887	_	
	0.8000		0.8660	2.0605	1.5443	1.7380		
	0.7000		0.7313	2.2849	1.3326	2.1083		
	0.6000	0.5860	0.6094	2.5998	1.1255	2.5524		
	0.5000	0.6857	0.4955	3.0510	0.9237	3.1331		
	0.4000		0.3877	3,7357	0.7274	3.9648		
		1.0937	0.2848	4.8835	0.5367	5.3073		
		1.6077	0.1861	7.1849	0.3518	7.9345		
		3.1522	0.0912	14.0945	0.1727	15.7103		
	Inf.	1.5451	1.6944	1.3820	0.8944	0.3090		
6	1.0000	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	
	1.1111	0.2890	1.0403	1.3217	2.0539	1.7443	1.3347	
	1.2500	0.2445	1.1163	1.1257	2.2389	1.5498	1.6881	
	1.4286	0.2072	1.2363	0.9567	2.4991	1.3464	2.0618	
	1.6667	0.1732	1.4071	0.8011	2.8580	1.1431	2.5092	
	2.0000	0.1412	1.6531	0.6542	3.3687	0.9423	3.0938	
	2.5000	0.1108	2.0275	0.5139	4.1408	0.7450	3.9305	
		0.0816	2.6559	0.3788	5.4325	0.5517	5.2804	
	5.0000	0.0535	3.9170	0.2484	8.0201	0.3628	7.9216	
	10.0000	0.0263	7.7053	0.1222		0.1788	15.7375	
	Inf.	1.5529	1.7593	1.5529	1.2016	0.7579	0.2588	
7	1.0000	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450
	0.9000	0.2985	0.7111	1.4043	1.4891	2.1249	1.7268	1.2961
	0.8000	0.3215	0.6057	1.5174	1.2777	2.3338	1.5461	1.6520
	0.7000	0.3571	0.5154	1.6883	1.0910	2.6177	1.3498	2.0277
	0.6000	0.4075	0.4322	1.9284	0.9170	3.0050	1.1503	2.4771
	0.5000	0,4799	0.3536	2.2726	0.7512	3.5532	0.9513	3.0640
	0.4000	0.5899	0.2782	2.7950	0.5917	4.3799	0.7542	3.9037
		0.7745	0.2055	3.6706	0.4373	5.7612	0.5600	5.2583
	0.2000	1.1448	0.1350	5,4267	0.2874	8.5263	0.3692	7.9079
	0.1000	2.2571	0.0665		0.1417		0.1823	15.7480
	Inf.	1.5576	1.7988	1.6588	1.3972	1.0550	0.6560	0.2225
п	1/R.	L_1	C2	La	C.	Ls	C.	L

From: Williams and Taylor, p. 11.3

EECS 247

Lecture 4: Active Filters

Low-Pass RLC Ladder Filter Conversion to Integrator Based Active Filter

- To convert RLC ladder prototype to integrator based filer:
 - □Use Signal Flowgraph technique
 - ✓ Name currents and voltages for all components
 - ✓ Use KCL & KVL to derive equations
 - ✓ Make sure reactive elements expressed as 1/s term
 - $\rightarrow V(C) = f(I) \& I(L) = f(V)$
 - ✓ Use state-space description to derive the SFG
 - ✓ Modify & simply the SFG for implementation with integrators e.g. convert all current nodes to voltage

EECS 247 Lecture 4: Active Filters © 2010 H.K. Page 9

Low-Pass RLC Ladder Filter Conversion to Integrator Based Active Filter

• Use KCL & KVL to derive equations:

© 2010 H.K. Page 10

EECS 247 Lecture 4: Active Filters

Low-Pass RLC Ladder Filter Signal Flowgraph

$$V_{I} = V_{in} - V_{2} , \quad V_{2} = \frac{I_{2}}{sC_{I}} \quad , \quad V_{3} = V_{2} - V_{4}$$

$$V_{4} = \frac{I_{4}}{sC_{3}} \quad , \quad V_{5} = V_{4} - V_{6} \quad , \quad V_{6} = \frac{I_{6}}{sC_{5}} \quad V_{o} = V_{6}$$

$$I_{1} = \frac{V_{I}}{Rs} \quad , \quad I_{2} = I_{I} - I_{3} \quad , \quad I_{3} = \frac{V_{3}}{sL_{2}}$$

$$I_{4} = I_{3} - I_{5} \quad , \quad I_{5} = \frac{V_{5}}{sL_{4}} \quad , \quad I_{6} = I_{5} - I_{7} \quad , \quad I_{7} = \frac{V_{6}}{RL}$$

$$V_{In} \quad I \quad V_{I} \quad -I \quad V_{2} \quad I \quad V_{3} \quad -I \quad V_{4} \quad I \quad V_{5} \quad -I \quad V_{6} \quad I \quad V_{o}$$

$$I_{1} \quad I_{2} \quad -I \quad I_{3} \quad I \quad I_{4} \quad -I \quad I_{5} \quad I \quad I_{6} \quad -I \quad I_{7}$$

$$SFG$$

EECS 247 Lecture 4: Active Filters

© 2010 H.K. Page 11

Low-Pass RLC Ladder Filter Normalize

EECS 247

Lecture 4: Active Filters

Low-Pass RLC Ladder Filter Synthesize

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 13

Low-Pass RLC Ladder Filter Integrator Based Implementation

$$\tau_1 = C_1.R^* \quad , \quad \tau_2 = \frac{L_2}{R^*} = C_2.R^* \quad , \quad \tau_3 = C_3.R^* \quad , \quad \tau_4 = \frac{L4}{R^*} = C_4.R^* \quad , \quad \tau_5 = C_5.R^*$$

Main building block: Integrator

Let us start to build the filter with RC& Opamp type integrator

EECS 247

Lecture 4: Active Filters

Opamp-RC Integrator

Single-Ended

$$V_{o} = -V_{in1} \times \frac{1}{sR_{I}CI}$$
$$-V_{in2} \times \frac{1}{sR_{2}CI}$$

$$V_{O+} - V_{O-} = (V_{inI+} - V_{inI-}) \times \frac{I}{sR_{I}CI} + (V_{in2+} - V_{in2-}) \times \frac{I}{sR_{2}CI}$$

Note: Implementation with single-ended integrator requires extra circuitry for sign inversion whereas in differential case both signal polarities are available Differential topologies → additional advantage of immunity to parasitic signal injection & superior power-supply rejection

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 15

Differential Integrator Based LP Ladder Filter

- First iteration:
- All resistors are chosen= 1Ω
- Values for $\tau_x = R_x CI_x$ found from RLC analysis
- Integrating capacitor values: CI1=CI5=9.836nF, CI2=CI4=25.45nF, CI3=31.83nF

EECS 247

Differential Integrator Based LP Ladder Filter Node Scaling

- · Second iteration:
 - Nodes scaled, note output node x2
 - Resistor values scaled according to scaling of nodes
 - Capacitors the same : C1 = C5 = 9.836nF, C2 = C4 = 25.45nF, C3 = 31.83nF

EECS 247

Lecture 4: Active Filters

Differential Integrator Based LP Ladder Filter Final Design

- Based on scaled nodes and noise considerations
 - Capacitors: C1=C5=0.9836pF, C2=C4=2.545pF, C3=3.183pF
 - Resistors: R1=11.77K, R2=9.677K, R3=10K, R4=12.82K, R5=8.493K, R6=11.93K, R7=7.8K, R8=10.75K, R9=8.381K, R11=10K, R11=9.306K

EECS 247 Lecture 4: Active Filters © 2010 H.K. Page 23

RLC Ladder Filters Including Transmission Zeros

EECS 247

Lecture 4: Active Filters

RLC Ladder Filter Design Example

- Design a baseband filter for CDMA IS95 cellular phone receive path with the following specs.
 - Filter frequency mask shown on the next page
 - Allow enough margin for manufacturing variations
 - · Assume overall tolerable pass-band magnitude variation of 1.8dB
 - Assume the -3dB frequency can vary by +-8% due to manufacturing tolerances & circuit inaccuracies
 - Assume any phase impairment can be compensated in the digital domain
 - * Note this is the same example as for cascade of biquad while the specifications are given closer to a real product case

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 25

RLC Ladder Filter Design Example CDMA IS95 Receive Filter Frequency Mask

EECS 247

Lecture 4: Active Filters

RLC Ladder Filter Design Example: CDMA IS95 Receive Filter

- Since phase impairment can be corrected for, use filter type with max. roll-off slope/pole
 - → Filter type → Elliptic
- · Design filter freq. response to fall well within the freq. mask
 - Allow margin for component variations & mismatches
- For the passband ripple, allow enough margin for ripple change due to component & temperature variations
 - → Design nominal passband ripple of 0.2dB
- For stopband rejection add a few dB margin 44+5=49dB
- · Final design specifications:
 - fpass = 650 kHz Rpass = 0.2 dB
 - fstop = 750 kHz Rstop = 49 dB
- Use Matlab or ADS or filter tables to decide the min. order for the filter (same as cascaded biquad example)
 - 7th Order Elliptic

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 27

RLC Low-Pass Ladder Filter Design Example: CDMA IS95 Receive Filter

- Use filter tables & charts to determine LC values
- · Can use the CAD tool: Agilent ADS

EECS 247

Lecture 4: Active Filters

RLC Ladder Filter Design Example: CDMA IS95 Receive Filter

· Specifications

- fpass = 650 kHz Rpass = 0.2 dB - fstop = 750 kHz Rstop = 49 dB

- · Use filter tables to determine LC values
 - Table from: A. Zverev, Handbook of filter synthesis, Wiley, 1967
 - Elliptic filters tabulated wrt "reflection coefficient ρ "

$$Rpass = -10 \times log(1-\rho^2)$$

- Since Rpass=0.2dB → ρ =20%
- Use table accordingly

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 29

RLC Ladder Filter Design Example: CDMA IS95 Receive Filter

- Table from Zverev book page #281 & 282:
- Since our spec. is Amin=44dB add 5dB margin & design for Amin=49dB

EECS 247

Lecture 4: Active Filters

		K ² = 1,0									
	<u>θ</u>	C ₁	C2	L ₂	C3 2.240	0.00000	1.515	C ₅	C ₆	L6 1.389	C7
	11.0 12.0	1.33064	0.00503	1.38316	2.21490 2.21011	0.02330 0.02777	1.48669 1.48125	2.20558 2.19903	0.01637 0.01952	1.389 1.36926 1.36559	1,335 1,3194
	13.0 14.0	1.32892 1.32794	0.00704 0.00818	1.38102	2.20491 2.19929	0.03264 0.03792	1.47534	2.19903 2.19192 2.18424	0.01952 0.02295 0.02667	1.36309 1.36161 1.35731	1,3164 1,3132 1,3097
T	15.0 16.0	1.32690	0.00941	1.37852	2.19327 2.18683	0.04362 0.04973	1.46213	2.17601 2.16721	0.03068	1.35269	1,30600
 Table from Zverev 	17.0 18.0	1.32457 1.32330	0.01213 0.01362	1.37564 1.37406	2.17999 2.17273	0.05627 0.06323	1.44708 1.43886	2.15786 2.14796	0.03959	1.34249	1,30200 1,29774 1,29321
page #281 & 282:	19.0 20.0	1.32194 1.32051	0.01521 0.01689	1.37238 1.37061	2.16507 2.15700	0.07063 0.07848	1.43019 1.42107	2.13750 2.12649	0.04973 0.05527	1.33100 1.32478	1.28841
	21.0 22.0 23.0	1.31900 1.31741	0.01866 0.02054	1.36874 1.36677	2.14852 2.13964	0.08677 0.09552	1.41149 1.40147	2.11493 2.10283	0.06113 0.06732	1.31823 1.31137	1.27803
	24.0 25.0	1.31574 1.31398 1.31215	0.02250 0.02457 0.02674	1.36470 1.36253 1.36026	2.13035 2.12066 2.11057	0.10474 0.11443 0.12461	1.39100 1.38009 1.36874	2.09018 2.07699	0.07384	1.30418 1.29666	1.26658
 Normalized 	26.0	1.31022	0.02901 0.03138	1.35788 1.35540	2.11057 2.10008 2.08919	0.12461 0.13529 0.14648	1.35695 1.34473	2.06327 2.04901	0.08792 0.09549	1.28882 1.28066	1.25405
component values:	27.0 28.0 29.0	1.30612	0.03138 0.03386 0.03645	1,35281 1,35012	2.07790 2.06621	0.14648 0.15820 0.17045	1.33207 1.31899	2.03422 2.01890 2.00305	0.10343 0.11174 0.12044	1.27218 1.26336 1.25423	1,24044 1,23322 1,22572
C1=1.17677	30.0 31.0	1.30167 1.29930	0.03914 0.04196	1.34731	2.05413 2.04165	0.18325 0.19663	1.30549	1.98669	0.12954	1.24476	1.21794
•	32.0 33.0	1.29684 1.29429	0.04488 0.04793	1.34136 1.33821	2.02878 2.01552	0.21059 0.22516	1.27722	1.95241	0.14898 0.15935	1.22485 1.21440	1.20154
C2=0.19393	34.0 35.0	1.29164 1.28889	0.05109 0.05438	1.33494 1.33155	2.00187 1.98782	0.24036 0.25621	1.24730 1.23173	1.91609 1.89717	0.17017 0.18146	1.20362 1.19250	1.18399 1.17479
L2=1.19467	36.0 37.0 38.0	1.28603 1.28307 1.28001	0.05780 0.06135 0.06504	1.32803 1.32439 1.32062	1.97339 1.95857 1.94336	0.27274 0.28998 0.30794	1.21576 1.19939 1.18263	1.87776 1.85786 1.83747	0.19323 0.20551 0.21832	1.18106 1.16928 1.15716	1.16529 1.15549
C3=1.51134	39.0 40.0	1.27683 1.27355	0.06887 0.07284	1.31671 1.31267	1.92777	0.32668 0.34622	1.16548	1.81659	0.23168	1.13/16 1.14471 1.13192	1.14539 1.13499 1.12428
	41.0 42.0	1.27014 1.26662	0.07696 0.08123	1.30849 1.30416	1.89542 1.87867	0.36660 0.38787	1.13003 1.11174	1.77342 1.75113	0.26013 0.27529	1.11879	1.11326
C4=1.01098	43.0 44.0 45.0	1.26297 1.25920	0.08566 0.09026	1.29969 1.29506	1.86154 1.84403	0.41006 0.43324	1.09308 1.07406	1.72837	0.29110	1.09151 1.07735	1.09026 1.07828
L4=0.72398	46.0 47.0	1.25529 1.25125 1.24707	0.09504 0.09999 0.10513	1.29027 1.28532 1.28020	1.82614 1.80786 1.78920	0.45746 0.48277 0.50926	1.05467 1.03493 1.01484	1.68151 1.65741 1.63287	0.32484 0.34285	1.06285	1.06596 1.05331
	48.0 49.0	1.24274 1.23826	0.11046 0.11600	1,27491	1,77015	0.53699 0.56606	0.99439 0.97361	1.60791 1.58252	0.36167 0.38135 0.40196	1.03278 1.01722 1.00131	1.04032 1.02697 1.01327
C5=1.27776	50.0 51.0	1.23362 1.22882	0.12175 0.12772	1.26377	1.73092	0.59655 0.62857	0.95250 0.93105	1.55672 1.53051	0.42354	0.98503	0.99920
C6=0.71211	52.0 53.0 54.0	1.22385 1.21869	0.13394 0.14040	1.25184 1.24556	1.69014 1.66917	0.66223 0.69768	0.90927 0.88718	1.50390 1.47690	0.46990	0.95138 0.93401	0.96992 0.95470
L6=0.80165	55.0 56.0	1.21335 1.20781 1.20207	0.14712 0.15412 0.16141	1.23906 1.23233 1.22534	1.64782 1.62607	0.73505 0.77452	0.86477 0.84205	1.44952 1.42177	0.52106 0.54868	0.91626 0.89813	0.93907 0.92302
_0 0.00.00	57.0 58.0	1.19610 1.18991	0.16902 0.17696	1.21810	1.60392 1.58138 1.55844	0.81628 0.86054 0.90754	0.81902 0.79570 0.77208	1.39365 1.36518 1.33637	0.57779 0.60854 0.64106	0.87962 0.86072 0.84143	0.90654 0.88961 0.87222
C7=0.83597	60.0	1.17677	0.18525	1.19467	1.50510	0.90758	0.74817	1.30723	0.6/33Z 0.71211	0.82174	0.83597
•	θ	L ₁	L ₂	C ₂	L ₃	L ₄	C ₄	L ₅	L ₆	c _e	L ₇

- Passband well within spec.
- Make sure enough margin is allowed for variations due to process & temperature

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 33

RLC Ladder Filter Sensitivity

- The design has the same specifications as the previous example implemented with cascaded biquads
- To compare the sensitivity of RLC ladder versus cascaded-biquads:
 - Changed all Ls &Cs one by one by 2% in order to change the pole/zeros by 1% (similar test as for cascaded biquad)
 - Found frequency response → most sensitive to L4 variations
 - Note that by varying L4 both poles & zeros are varied

EECS 247

Lecture 4: Active Filters

Sensitivity Comparison for Cascaded-Biquads versus RLC Ladder

- 7th Order elliptic filter
 - 1% change in pole & zero pair

	Cascaded Biquad	RLC Ladder					
Passband deviation	2.2dB (29%)	0.2dB (2%)					
Stopband deviation	3dB (40%)	1.7dB (21%)					

Doubly terminated LC ladder filters ⇒ Significantly lower sensitivity compared to cascaded-biquads particularly within the passband

EECS 247

Lecture 4: Active Filters

RLC Ladder Filter Design Example: CDMA IS95 Receive Filter

- Previously learned to design integrator based ladder filters without transmission zeros
 - → Question:
 - o How do we implement the transmission zeros in the integrator-based version?
 - o Preferred method → no extra power dissipation → no extra active elements

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 39

Integrator Based Ladder Filters How Do to Implement Transmission zeros?

• Use KCL & KVL to derive:

$$I_2 = I_1 - I_3 - I_{C_a} \,, \qquad I_{C_a} = \left(V_2 - V_4 \right) s^C_a \,, \qquad V_2 = \frac{I_2}{sC_1} \,$$

Substituting for
$$I_2 \longrightarrow V_2 = \frac{I_1 - I_3 - I_{C_a}}{sC_1}$$

Substituting for I_{C_a} and rearranging: $V_2 = \frac{I_1 - I_3}{s(C_I + C_a)} + V_4 \times \frac{C_a}{C_I + C_a}$

EECS 247

Lecture 4: Active Filters

Integrator Based Ladder Filters How Do to Implement Transmission zeros?

• Use KCL & KVL to derive :

$$V_{2} = \frac{I_{1} - I_{3}}{s\left(C_{1} + C_{a}\right)} + V_{4} \times \frac{C_{a}}{C_{1} + C_{a}}$$
Frequency independent constants

Can be substituted by:
$$V_{4} = \frac{I_{3} - I_{5}}{s\left(C_{3} + C_{a}\right)} + V_{2} \times \frac{C_{a}}{C_{3} + C_{a}}$$
Voltage-Controlled Voltage Source

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 41

Integrator Based Ladder Filters Transmission zeros

• Replace *shunt capacitors* with *voltage controlled voltage sources*:

$$V_2 = \frac{I_1 - I_3}{s(C_1 + C_a)} + V_4 \frac{C_a}{C_1 + C_a}$$

$$V_4 = \frac{I_3 - I_5}{s(C_3 + C_a)} + V_2 \frac{C_a}{C_3 + C_a}$$
Exact same expressions as with Ca present

EECS 247

Lecture 4: Active Filters

3rd Order Lowpass Filter All Poles & No Zeros

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 43

Implementation of Zeros in Active Ladder Filters Without Use of Active Elements

EECS 247

Lecture 4: Active Filters

Example: 5th Order Chebyshev II Filter

- 5th order Chebyshev II
- Table from: Williams & Taylor book, p. 11.112
- 50dB stopband attenuation
- $f_{-3dB} = 10MHz$

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 47

Transmission Zero Generation Opamp-RC Integrator

$$V_{O} = -\frac{1}{s(C+C_{x})} \left[\frac{V_{in1}}{R_{l}} + \frac{V_{in2}}{R_{2}} + \frac{V_{o}}{R_{f}} \right]$$

$$V_{in3} \times \frac{C_{x}}{C+C_{x}}$$

EECS 247

Lecture 4: Active Filters

Differential Integrator Based LP Ladder Filter Final Design 5th Order All-Pole

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 49

Differential 5th Order Chebychev Lowpass Filter

 \square All resistors 1 Ω

□Capacitors: *C1*=36.11nF, *C2*=14.05nF, *C3*=12.15nF, *C4*=5.344nF, *C5*=2.439nF

□ Coupling capacitors: Ca=1.36nF, Cb=1.36nF, Cc=1.31nF, Cd=1.31nF

EECS 247

Lecture 4: Active Filters

Effect of Integrator Non-Idealities on Filter Frequency Characteristics

- In the passive filter design (RLC filters) section:
 - Reactive element (L & C) non-idealities → expressed in the form of Quality Factor (Q)
 - Filter impairments due to component non-idealities explained in terms of component Q
- In the context of active filter design (integrator-based filters)
 - -Integrator non-idealities → Translates to the form of Quality Factor (Q)
 - Filter impairments due to integrator non-idealities explained in terms of integrator Q

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 53

Effect of Integrator Non-Idealities on Filter Performance

- Ideal integrator characteristics
- Real integrator characteristics:
 - Effect of opamp finite DC gain
 - Effect of integrator non-dominant poles

EECS 247

Lecture 4: Active Filters

Effect of Integrator Non-Idealities on Filter Performance Ideal Integrator

Ideal Integrator:

Single pole @ DC

 \rightarrow no non-dominant poles

$$H(s) = \frac{-\omega_0}{s}$$

$$\omega_0 = 1/RC$$

EECS 247 Lecture 4: Active Filters

© 2010 H.K. Page 55

Ideal Integrator Quality Factor

Ideal intg. transfer function:

$$H(s) = \frac{-\omega_o}{s} = \frac{-\omega_o}{j\omega} = -\frac{1}{j\frac{\omega}{j\omega}}$$

Since component Q is defined as::
$$\begin{cases} H(j\omega) = \frac{1}{R(\omega) + jX(\omega)} \\ Q = \frac{X(\omega)}{R(\omega)} \end{cases}$$
Then Q factor at the unity-gain frequency (ω) :

Then Q factor at the unity-gain frequency (ω_o):

$$Q_{ideal}^{intg.} = \infty$$

EECS 247

Lecture 4: Active Filters

Real Integrator Opamp Related Non-Idealities $\frac{\text{Ideal Intg.}}{\log |H(s)|}$ $H(s) = \frac{-a_0}{s}$ $H(s) \approx \frac{-a}{(1+s\frac{a}{a_0})(1+\frac{s}{p^2})(1+\frac{s}{p^3})...}$ EECS 247 Lecture 4: Active Filters © 2010 H.K. Page 57

Effect of Integrator Finite DC Gain on Q Example: Lowpass Filter

- · Finite opamp DC gain
 - \rightarrow Phase lead @ ω_0
 - →Droop in the passband

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 59

Effect of Integrator Finite DC Gain on Q Example: Lowpass Filter

- Effect of opamp finite DC gain on filter singularities
- Pushes the ideal poles away from the $j\omega$ axis
- Results in Q reduction of the poles and thus droop in the passband

- Opamp with finite DC gain
- Ideal opamps & ideal filter pole locations

EECS 247

Lecture 4: Active Filters

Effect of Integrator Non-Dominant Poles Example: Lowpass Filter

- Effect of opamp finite bandwidth on filter singularities
- Pushes the ideal poles towards jω axis
- Results in Q enhancement of the poles and thus peaking in the passband

- Opamp with finite bandwidth
- Ideal opamps & ideal pole locations

EECS 247

Lecture 4: Active Filters

Integrator Quality Factor

Real intg. transfer function: $H(s) \approx \frac{-a}{\left(1 + s \frac{a}{\omega_0}\right) \left(1 + \frac{s}{p^2}\right) \left(1 + \frac{s}{p^3}\right) \dots}$

Based on the definition of Q and assuming that:

$$\frac{\omega_0}{p_{2,3}} << 1$$
 & $a>> 1$

It can be shown that <u>in the</u> <u>vicinity</u> of unity-gain-frequency:

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 65

Example: Effect of Integrator Finite Q on Bandpass Filter Behavior

Integrator DC gain=100

Integrator $P2 @ 100.\omega_o$

EECS 247

Lecture 4: Active Filters

Example: Effect of Integrator Q on Filter Behavior

Integrator DC gain=100 & P2 @ 100. ω_o

EECS 247 Lecture 4: Active Filters

Effect of Integrating Capacitor Series Resistance on Integrator Q

Finite R_{sc} adds LHP zero @ $\frac{1}{R_{sc}C}$

$$H(s) = \frac{-\omega_O(1 + R_{sc}Cs)}{}$$

$$\rightarrow Q_{intg} \approx \frac{R}{R_{sc}}$$

Typically, opamp non-idealites dominate Q_{intg}

EECS 247

Lecture 4: Active Filters

© 2010 H.K. Page 68

Summary Effect of Integrator Non-Idealities on Q

$$Q_{ideal}^{intg.} = \infty$$

$$Q_{real}^{intg.} \approx \frac{1}{\frac{1}{a} - \omega_0 \sum_{i=2}^{\infty} \frac{1}{p_i}}$$

- Amplifier finite DC gain reduces the overall Q in the same manner as series/parallel resistance associated with passive elements
 Amplifier poles located above integrator unity-gain frequency enhance the Q!
- - If non-dominant poles close to unity-gain freq. → Oscillation
- Depending on the location of unity-gain-frequency, the two terms can cancel each other out!
- Overall quality factor of the integrator has to be much higher compared to the filter's highest pole Q

EECS 247

Lecture 4: Active Filters