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EE247 

Lecture 4

• Active ladder type filters 

–For simplicity, will start with all pole ladder type filters

• Convert to integrator based form- example shown

–Then will attend to high order ladder type filters 

incorporating zeros

• Implement the same 7th order elliptic filter in the form of 

ladder RLC with zeros

– Find level of sensitivity to component mismatch 

– Compare with cascade of biquads

• Convert to integrator based form utilizing SFG techniques

–Effect of integrator non-Idealities on filter frequency 

characteristics
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Summary Lecture 3

• Active Filters

– Active biquads

• Integrator-based filters

– Signal flowgraph concept

– First order integrator-based filter

– Second order integrator-based filter & biquads

– High order & high Q filters

• Cascaded biquads & first order filters

– Cascaded biquad sensitivity to component mismatch

• Ladder type filters
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RLC Ladder Filters

Example: 5th Order Lowpass Filter

• Made of resistors, inductors, and capacitors

• Doubly terminated or singly terminated (with or w/o RL)

Rs

C1 C3

L2

C5

L4

inV
RL

oV

Doubly terminated LC ladder filters  Lowest sensitivity to 

component mismatch
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LC Ladder Filters

• First step in the design process is to find values for Ls and Cs 
based on specifications:
– Filter graphs & tables found in:

• A. Zverev, Handbook of filter synthesis, Wiley, 1967.

• A. B. Williams and F. J. Taylor, Electronic filter design, 3rd edition, McGraw-
Hill, 1995.

– CAD tools
• Matlab, 

• Agilent ADS (includes Filter package does the job of the tables)

• Spice

Rs

C1 C3

L2

C5

L4

inV
RL

oV
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LC Ladder Filter Design Example

Design a LPF with  maximally flat passband:

f-3dB = 10MHz,  fstop = 20MHz

Rs >27dB @ fstop
• Maximally flat passband   Butterworth

From: Williams and Taylor, p. 2-37

S
to
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u
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n

Normalized w

• Find minimum filter order 

:

• Here standard graphs 

from filter books are 

used

fstop / f-3dB = 2

Rs >27dB

Minimum Filter Order

c5th order Butterworth

1

-3dB
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-30dB
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LC Ladder Filter Design Example

From: Williams and Taylor, p. 11.3

Find values for L & C from Table:

Note L &C values normalized to

w-3dB =1

Denormalization:

Multiply all LNorm, CNorm by:

Lr = R/w-3dB

Cr = 1/(RXw-3dB )

R is the value of the source and 

termination resistor 

(choose both 1W for now)

Then: L= Lr xLNorm

C= Cr xCNorm
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LC Ladder Filter Design Example

From: Williams and Taylor, p. 11.3

Find values for L & C from Table:

Normalized values:

C1Norm =C5Norm =0.618

C3Norm = 2.0

L2Norm = L4Norm =1.618

Denormalization:

Since w-3dB =2px10MHz

Lr = R/w-3dB = 15.9 nH

Cr = 1/(RXw-3dB )= 15.9 nF

R =1

cC1=C5=9.836nF, C3=31.83nF

cL2=L4=25.75nH
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Last Lecture:

Example:  5th Order Butterworth Filter

Rs=1W

C1

9.836nF

C3

31.83nF

L2=25.75nH

C5

9.836nF

L4=25.75nH

inV RL=1W

oV

Specifications:

f-3dB = 10MHz, 

fstop = 20MHz

Rs >27dB

Used filter tables to obtain 

Ls & Cs

Frequency [MHz]
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e
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-6 dB passband 

attenuation

due to double 

termination

30dB

SPICE simulation Results
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Low-Pass RLC Ladder Filter

Conversion to Integrator Based Active Filter

1I

2V

Rs

C1 C3

L2

C5

L4

inV
RL

4V 6V

3I 5I

2I
4I 6I

7I

• To convert RLC ladder prototype to integrator based filer:

Use Signal Flowgraph technique

Name currents and voltages for all components

Use KCL & KVL to derive equations

Make sure reactive elements expressed as 1/s term                                

 V(C ) =f(I) & I(L)=f(V)

Use state-space description to derive the SFG

Modify & simply the SFG for implementation with 

integrators e.g. convert all current nodes to voltage

1V  3V  5V 

1

sC

oV
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Low-Pass RLC Ladder Filter

Conversion to Integrator Based Active Filter

1I

2V

Rs

C1 C3

L2

C5

L4

inV
RL

4V 6V

3I 5I

2I
4I 6I

• Use KCL & KVL to derive equations:

1V  3V  5V 

1

sC

oV

1 in 2

1 3
1 3

2

5 6
5 7

4

I2V V V , V , V V V2 3 2 4sC1
I I4 6V , V V V , V V V4 5 4 6 6 o 6

sC sC3 5

V V
I , I I I , I2 1 3Rs sL

V V
I I I , I , I I I , I4 3 5 6 5 7

sL RL

    

    

   

     

7I
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Low-Pass RLC Ladder Filter

Signal Flowgraph

1

sC

SFG

1

Rs 1

1

sC

2I1I

2V
inV 11

1

1V oV1 11

3

1

sC 5

1

sC2

1

sL 4

1

sL

1

RL

1 1 11 1

1 13V 4V 5V 6V

3I 5I4I 6I 7I

1 in 2

1 3
1 3

2

5 6
5 7

4

I2V V V , V , V V V2 3 2 4sC1
I I4 6V , V V V , V V V4 5 4 6 6 o 6

sC sC3 5

V V
I , I I I , I2 1 3Rs sL

V V
I I I , I , I I I , I4 3 5 6 5 7

sL RL
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Low-Pass RLC Ladder Filter

Normalize

1

sC

1

1

*R

Rs
*

1

1

sC R

'
1V

2V
inV 11 1V oV1 1

*

2

R

sL

1 1 11 1

1 13V 4V 5V 6V

'
3V

'
2V '

4V
'

5V '
6V

'
7V

*
3

1

sC R

*
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R

sL
*

5

1

sC R

*R

RL

1

Rs 1

1

sC

2I1I

2V
inV 11

1

1V oV1 11

3
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sC 5

1

sC2

1

sL 4

1

sL

1

RL
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1 13V 4V 5V 6V

3I 5I4I 6I 7I
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Low-Pass RLC Ladder Filter

Synthesize

1

sC

1

1

1

*R

Rs
*

1

1

sC R

'
1V

2V
inV 11 1V oV1 1

*

2

R

sL

1 1 11 1

1 13V 4V 5V 6V

'
3V

'
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4V
'
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6V

'
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*
3

1

sC R

*

4

R
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*

5

1

sC R
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RL

inV

1
+      -

-+ -+

+      - +      -

*R
Rs



*R
RL2

1
st 3

1
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1
st 5

1
st1

1
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oV2V
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'
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'
5V
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Low-Pass RLC Ladder Filter

Integrator Based Implementation

* * * * *2
* *

L L4
C C C C.R , .R , .R , .R , C .R11 2 2 3 3 4 4 5 5

R R
t t t t t      

Main building block: Integrator

Let us start to build the filter with RC& Opamp type integrator

inV

1
+      -

-+ -+

+      - +      -

*R
Rs



*R
RL2

1
st 3

1
st 4

1
st 5

1
st1

1
st

oV2V
4V 6V

'
3V '

5V
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Opamp-RC Integrator

 

 

1

2

o o in1 in1

in2 in2

1
V V V V

sR CI

1
V V

sR CI

   

 

   

  

oV

CI

in1V
-

+
R1

Note: Implementation with single-ended integrator requires extra circuitry for sign 

inversion whereas in differential case both signal polarities are available

Differential topologies additional advantage of immunity to parasitic 

signal injection & superior power-supply rejection

R2
in2V

CI
-

+

R1

R2

R2

R1

+

-

Vin2

Vin1

Vin1

Vin2

Vo

Vo 

Single-Ended Differential

1

2

o in1

in2

1
V V

sR CI

1
V

sR CI

  

 

CI
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inV

Differential Integrator Based LP Ladder Filter

Synthesize

• First iteration:

 All resistors are chosen=1W

 Values for txRxCIx found from RLC analysis

 Integrating capacitor values: CI1=CI5=9.836nF, CI2=CI4=25.45nF, CI3=31.83nF

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

-V2+
-V4+

-VO+

-V3
’+ -V5

’+

CI1 CI1 CI3 CI3

CI2 CI2 CI4 CI4

CI5 CI5
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First Iteration

Simulated Magnitude Response

oV

4V

'
3V

'
5V

2V

0.5

1

0.1

1

0.5

10MHz 10MHz
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Scale Node Voltages

Scale Vo by factor “s”
To maximize dynamic range 

 scale node voltages 
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inV

Differential Integrator Based LP Ladder Filter

Node Scaling

• Second iteration:

 Nodes scaled, note output node x2

 Resistor values scaled according to scaling of nodes

 Capacitors the same : C1=C5=9.836nF, C2=C4=25.45nF, C3=31.83nF

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

VO X 2

X
 2

/1
.8

V4 X 1.6

V3
’ X 1.2 V5

’ X 1.8

V2

X
1

.8
/2

X
 1

.6
/1

.8

X
 1

.8
/1

.6

X
 1

.2

X
 1

.2
/1

.6

X
 1

/1
.2

X
 1

.6
/1

.2
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Second Interation

Maximizing Signal Handling by Node Voltage Scaling

Scale Vo by factor “s”

Before Node Scaling
After Node Scaling
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Filter Noise

Total noise @ the output: 

1.4 mV rms

(noiseless opamps)

That’s excellent, but:

• Capacitors too large 

for integration          

 Unrealistically 

large Si area

• Resistors too small   

 high power 

dissipation

Typical applications allow 

higher noise, assuming 

tolerable noise in the 

order of  140 mV rms …

Output noise voltage 

spectral density

Integrated Noise

1.4mVrms
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Scale to Meet Noise Target

Scale capacitors and resistors 

to meet noise objective

s = 10-4  
 (Vn1/Vn2)

2

Noise after scaling:  141 mV rms (assuming noiseless opamps)

141mVrms
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inV

Differential Integrator Based LP Ladder Filter

Final Design

• Final iteration:

 Based on scaled nodes and noise considerations

 Capacitors: C1=C5=0.9836pF, C2=C4=2.545pF, C3=3.183pF

 Resistors: R1=11.77K, R2=9.677K, R3=10K, R4=12.82K, R5=8.493K, 

R6=11.93K, R7=7.8K, R8=10.75K, R9=8.381K, R11=10K, R11=9.306K

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

VO

C1 C1 C3 C3

C2
C2

C4 C4

C5 C5

R1

R2

R3 R4

R5

R6 R7

R8
R9

R10

R11
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RLC Ladder Filters

Including Transmission Zeros

Rs

C1 C3

L2

C5

L4

inV
RLC7

L6

C2 C4 C6

oV

Rs

C1 C3

L2

C5

L4

inV
RL

oVAll poles

Poles & Zeros
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RLC Ladder Filter Design 

Example

• Design a baseband filter for CDMA IS95 cellular phone receive 

path with the following specs.

– Filter frequency mask shown on the next page

– Allow enough margin for manufacturing variations

• Assume overall tolerable  pass-band magnitude variation of 1.8dB

• Assume the -3dB frequency can vary by +-8% due to 

manufacturing tolerances & circuit inaccuracies

– Assume any phase impairment can be compensated in the 

digital domain

* Note this is the same example as for cascade of biquad while 

the specifications are given closer to a real product case
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RLC Ladder Filter Design Example

CDMA IS95 Receive Filter Frequency Mask

+1
0

-1

Frequency [Hz]

M
a
g

n
it

u
d

e
 (

d
B

)

-44

-46

600k 700k     900k  1.2M       



EECS 247                                          Lecture 4:  Active Filters © 2010 H.K.  Page 27

RLC Ladder Filter Design

Example: CDMA IS95 Receive Filter

• Since phase impairment can be corrected for, use filter type with 
max. roll-off slope/pole

 Filter type  Elliptic

• Design filter freq. response to fall well within the freq. mask

– Allow margin for component variations & mismatches

• For the passband ripple, allow enough margin for ripple change 
due to component & temperature variations

 Design nominal passband ripple of 0.2dB

• For stopband rejection add a few dB margin 44+5=49dB

• Final design specifications:

– fpass = 650 kHz Rpass = 0.2 dB

– fstop = 750 kHz Rstop = 49 dB
• Use Matlab or ADS or filter tables to decide the min. order for 

the filter (same as cascaded biquad example)

– 7th Order Elliptic
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RLC Low-Pass Ladder Filter Design

Example: CDMA IS95 Receive Filter

Rs

C1 C3

L2

C5

L4

RLC7

L6

C2 C4 C6
7

th
order Elliptic

• Use filter tables & charts to determine LC values

• Can use the CAD tool: Agilent ADS 

oV

inV
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RLC Ladder Filter Design

Example: CDMA IS95 Receive Filter

• Specifications

– fpass = 650 kHz Rpass = 0.2 dB

– fstop = 750 kHz Rstop = 49 dB

• Use filter tables to determine LC values 

– Table from: A. Zverev, Handbook of filter synthesis, Wiley, 
1967

– Elliptic filters tabulated wrt “reflection coefficient r”

– Since Rpass=0.2dB r =20%

– Use table accordingly 

 2Rpass 10 log 1 r   
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RLC Ladder Filter Design

Example: CDMA IS95 Receive Filter

• Table from Zverev book page 

#281 & 282:

• Since our spec. is Amin=44dB 

add 5dB margin & design for 

Amin=49dB
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• Table from Zverev 
page #281 & 282:

• Normalized 
component values:

C1=1.17677

C2=0.19393

L2=1.19467

C3=1.51134

C4=1.01098

L4=0.72398

C5=1.27776

C6=0.71211

L6=0.80165

C7=0.83597
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RLC Filter Frequency Response
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)

• Component 

values 

denormalized

• Frequency 

response 

simulated 

• Frequency mask 

superimposed

• Frequency 

response well 

within spec.
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Frequency Response Passband Detail

-7.5

-7

-6.5

-6

-5.5

-5

200 300 400 500 600 700 800

• Passband 

well within 

spec.

• Make sure 

enough 

margin is 

allowed for 

variations 

due to 

process & 

temperature

Frequency [kHz]

M
a
g

n
it

u
d

e
 (

d
B

)
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RLC Ladder Filter Sensitivity

• The design has the same specifications as the 

previous example implemented with cascaded 

biquads

• To compare the sensitivity of RLC ladder versus 

cascaded-biquads:

– Changed all Ls &Cs one by one by 2% in order to change the 

pole/zeros by 1% (similar test as for cascaded biquad)

– Found  frequency response  most sensitive to L4 variations 

– Note that by varying L4 both poles & zeros are varied
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RCL Ladder Filter Sensitivity

Component mismatch in RLC filter:

– Increase L4 from its nominal value by 

2%

– Decrease L4 by 2%

-65

-55

-45

-35

-25

-15

-5

200 300 400 500 600 700 800 900 1000 1100 1200

Frequency [kHz]

M
a
g

n
it

u
d

e
 (

d
B

)

L4 nom

L4 low

L4 high
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RCL Ladder Filter Sensitivity
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-10

Sensitivity of Cascade of Biquads
Component mismatch in Biquad 4 (highest Q pole):

– Increase wp4 by 1%

– Decrease wz4 by 1%

High Q poles  High sensitivity

in Biquad realizations
Frequency [Hz]

1MHz

M
a
g
n
it
u
d
e
 (

d
B

)

-30

-40

-20

0

200kHz

3dB

600kHz

-50

2.2dB
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Sensitivity Comparison for Cascaded-Biquads versus 

RLC Ladder

• 7th Order elliptic filter 

– 1% change in pole & zero pair

Cascaded

Biquad

RLC Ladder

Passband 

deviation

2.2dB 

(29%)

0.2dB

(2%)

Stopband 

deviation

3dB

(40%)

1.7dB

(21%)

Doubly terminated LC ladder filters _ Significantly lower sensitivity 

compared to cascaded-biquads particularly within the passband
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RLC Ladder Filter Design

Example: CDMA IS95 Receive Filter

Rs

C1 C3

L2

C5

L4

inV
RLC7

L6

C2 C4 C6

oV

7
th

order Elliptic

• Previously learned to design integrator based ladder filters without 
transmission zeros

 Question: 

o How do we implement the transmission zeros in the integrator-
based version?  

o Preferred method  no extra power dissipation  no extra active 
elements
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Integrator Based Ladder Filters

How Do to Implement Transmission zeros?

1

sC

• Use KCL & KVL   to derive :

 

 

I2CI I I I , I V V s , VC C2 1 3 2 4 a 2a a sC1

I I IC1 3 aSubstituting for I V2 2 sC1

CI I1 3 aSubstituting for I and rearranging : V VC 2 4C Ca s C C1 1a a

     

 
 


  

 

1I 2V

Rs

C1 C3

L2

inV
RL

4V

3I
5I

2I
4I

1V  3V 

Ca

oV

ICa
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Integrator Based Ladder Filters

How Do to Implement Transmission zeros?

1

sC

• Use KCL & KVL to derive :

1I 2V

Rs

C1 C3

L2

inV
RL

4V

3I
5I

2I
4I

1V  3V 

Ca

oV

 

 

CI I1 3 aV V2 4C Cs C C1 1a a

CI I3 5 aV V4 2C Cs C C3 a 3 a


  

 


  

 

Frequency independent constants

Can be substituted by:

Voltage-Controlled Voltage Source
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Integrator Based Ladder Filters
Transmission zeros

1I 2V

 

 

CI I1 3 aV V2 4C Cs C C1 1a a

CI I3 5 aV V4 2C Cs C C3 a 3 a


 

 


 

 

1

sC

Rs L2

inV
RL

4V

3I

5I

2I
4I

1V  3V 

Ca

• Replace shunt capacitors with voltage controlled voltage sources:

+
-

 C C1 a  C C3 a

CaV4 C C1 a

CaV2 C C3 a

+
-

Exact same expressions 

as with Ca present
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3rd Order Lowpass Filter

All Poles & No Zeros 

1I 2V

Rs L2

inV
RL

4V

3I
5I

2I 4I

1V  3V 

1

Rs

1

sC1

2I1I

2VinV 11

1

1V oV1 11

1

sC32

1

sL

1

RL

1 11

3V 4V

3I 4I

oV

C3C1
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Implementation of Zeros in Active Ladder Filters 

Without Use of Active Elements

1I 2V

Rs L2

inV
RL

4V

3I
5I

2I 4I

1V  3V 

 C C1 a  C C3 a

CaV4 C C1 a

CaV2 C C3 a

1

Rs  

1

Cs 1 Ca

2I1I

2VinV 11

1

1V oV1 11

 a3

1

s C C2

1

sL

1

RL

1 11

3V 4V

3I 4I

oV

Ca
C C1 a

Ca
C C3 a

+
-

+
-
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Integrator Based Ladder Filters
Higher Order Transmission zeros

C1

2V
4V

C3

Ca
6VCb

2V 4V

+
-

+
-

 C C1 a  C C C3 a b 

CaV4 C C1 a

CaV2 C C3 a

6V

+
-

 C C5 b

CbV4 C C3 b+
-

CbV6 C C3 b

C5

Convert zero 

generating Cs 

in C loops to 

voltage-

controlled 

voltage sources
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Higher Order Transmission zeros
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6V 7I
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5V 

+
-

 C C5 b

CbV4 C C5 b+
-

CbV6 C C3 b
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3V

'
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Example:

5th Order Chebyshev II Filter

• 5th order Chebyshev II

• Table from: Williams & 

Taylor book, p. 11.112

• 50dB stopband 

attenuation

• f-3dB =10MHz
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Transmission Zero Generation

Opamp-RC Integrator

oV

C+Cx
-

+
R1

R2

Rf

Vin3
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Vin1

Cx

 x 1 2 f

1 in1 in2 o
o

s C C R R R

x
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x
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inV

Differential Integrator Based LP Ladder Filter

Final Design 5th Order All-Pole

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

VO

C1 C1 C3 C3

C2
C2

C4 C4

C5 C5

R1

R2

R3 R4

R5

R6 R7

R8
R9

R10

R11
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inV

Differential 5th Order Chebychev Lowpass Filter

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

oV
All resistors 1W

Capacitors: C1=36.11nF, C2=14.05nF, C3=12.15nF,C4=5.344nF, C5=2.439nF

Coupling capacitors: Ca=1.36nF, Cb=1.36nF, Cc=1.31nF, Cd=1.31nF

C1 C3

C2 C4

C5

Ca

Cb

Cc

Cd
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5th Order Chebyshev II Filter 

Simulated Frequency Response
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7th Order Differential Lowpass Filter 

Including Transmission Zeros
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+-
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+

+

-
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+-
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oV

Transmission zeros implemented with 

pair of coupling capacitors
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Effect of Integrator Non-Idealities on Filter

Frequency Characteristics

• In the passive filter design (RLC filters) section:
–Reactive element (L & C) non-idealities  expressed in the 

form of Quality Factor (Q)

–Filter impairments due to component non-idealities explained 
in terms of component Q

• In the context of active filter design (integrator-based 
filters)

– Integrator non-idealities  Translates to the form of Quality 
Factor (Q)

–Filter impairments due to integrator non-idealities explained in 
terms of integrator Q
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Effect of Integrator Non-Idealities on 

Filter Performance

• Ideal integrator characteristics

• Real integrator characteristics:

– Effect of opamp finite DC gain

– Effect of integrator non-dominant poles
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Effect of Integrator Non-Idealities on Filter Performance

Ideal Integrator

Ideal Intg.

oV

C

inV

-

+

R

Ideal Intg.

0w



-90o

 20log H w


DC gain

Single pole  @ DC 

      no non-dominant poles

oH( s )
s

1/ RCo

w

w












0dB

Phase

Ideal Integrator:

Ideal
opamp
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Ideal Integrator Quality Factor

 
   

 
 

1H j
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Since component Q is defined as::

Then Q factor at the unity-gain frequency (wo):

int g.
Q

ideal


1o oH( s )
s j j

o

w w

ww

w

 
   Ideal intg. transfer function:
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Real Integrator Opamp Related Non-Idealities

Ideal Intg. Real Intg.

   
o

o

s sa
p2 p3

a
H( s ) H( s )

1 11 ss . . .
w

w 
 

 

0w
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-90o
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Effect of Integrator Finite DC Gain on Q 

-90

-89.5

w
ow

o

P1

P1
o

( in radian )

Arctan
2 o

Phase lead @
w

p

w

w 





Example: a=100 P1/ w0  1/100

 phase error @ +0.5degree

0P1
a

w


0w

a

-90o

 log H s
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Effect of Integrator Finite DC Gain on Q

Example: Lowpass Filter

• Finite opamp DC gain

 Phase lead @ w0
Droop in the passband

Normalized Frequency

M
a
g

n
it
u

d
e

 (
d

B
)

1

Droop in the passband

Ideal intg

Intg with finite DC gain
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Effect of Integrator Finite DC Gain on Q

Example: Lowpass Filter

• Effect of opamp finite DC 

gain on filter singularities

• Pushes the ideal poles away 

from the jw axis

• Results in Q reduction of the 

poles and thus droop in the 

passband

s-plane
jw

s

Opamp with finite DC gain

Ideal opamps & ideal filter pole locations
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Effect of Integrator Opamp Related Non-Dominant 

Poles  

-90

-90.5

w
ow

o

i

o

i
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i 2
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i 2

( in radian )
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2
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Example: w0 /P2 1/100   

 phase error @ 0.5degree

0w

-90o

 log H s



P2P3
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Effect of Integrator Non-Dominant Poles

Example: Lowpass Filter

Normalized Frequency

M
a
g
n
it
u
d
e
 (

d
B

)

1

• Additional poles due to opamp 

poles:

 Phase lag @ w0
Peaking in the passband

In extreme cases could 

result in oscillation!

Peaking in the passband

Ideal intg

Opamp with finite bandwidth
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Effect of Integrator Non-Dominant Poles

Example: Lowpass Filter

• Effect of opamp finite 

bandwidth on filter 

singularities

• Pushes the ideal poles 

towards jw axis

• Results in Q enhancement of 

the poles and thus peaking in 

the passband

s-plane
jw

s

Opamp with finite bandwidth 

Ideal opamps & ideal pole locations
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Effect of Integrator Non-Dominant Poles & 

Finite DC Gain on Q 

-90

w
ow
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2 o
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Note that the two terms have different signs 

 Can cancel each other’s effect!
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Integrator Quality Factor

   o

s sa
p2 p3

a
H( s )

1 11 s . . .w




 
Real intg. transfer function:

o 1 & a 1
p2,3,. . . . .

int g. 1Q
real

1 1
oa pii 2

w

w

 




 


Based on the definition of Q 

and assuming that:

It can be shown that in the 

vicinity of unity-gain-frequency:
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Example:

Effect of Integrator Finite Q on Bandpass Filter Behavior

Integrator DC gain=100 Integrator P2 @ 100.wo

Ideal
Ideal

0.5o flead @ wo
intg 0.5o fexcess @ wo

intg
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Example:

Effect of Integrator Q on Filter Behavior

Integrator DC gain=100 & P2 @ 100. wo

Ideal

 0.5o flead 0.5o fexcess   @   wo
intg

 ferror @   wo
intg    ~ 0
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Effect of Integrating Capacitor Series Resistance on 

Integrator Q

Ideal Intg.

oV

C

inV

-

+

R

Ideal Intg.

0w
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 20log H w
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opamp
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1
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Typically ,  opamp non-ideali tes  dominate  Q
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sc
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Summary

Effect of Integrator Non-Idealities on Q

• Amplifier finite DC gain reduces the overall Q in the same manner as 
series/parallel resistance associated with passive elements

• Amplifier poles located above integrator unity-gain frequency enhance 
the Q! 

– If non-dominant poles close to unity-gain freq.  Oscillation

• Depending on the location of unity-gain-frequency, the two terms can 
cancel each other out!

• Overall quality factor of the integrator has to be much higher compared to 
the filter’s highest pole Q

i
1 1

o p
i 2

int g.
ideal

int g. 1
real

Q

Q

a w















