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EE247 

Lecture 5
• Filters

–Effect of integrator non-idealities on filter behavior
• Integrator quality factor and its influence on filter frequency 
characteristics (brief review for last lecture)

•Filter dynamic range limitations due to limited integrator linearity 

– Measures of linearity: Harmonic distortion, intermodulation 
distortion, intercept point

•Effect of integrator component variations and mismatch on filter 
response

–Various integrator topologies utilized in monolithic filters
•Resistor + C based filters

•Transconductance (gm) + C based filters

•Switched-capacitor filters

–Continuous-time filter considerations
•Facts about monolithic Rs, gms, & Cs  and its effect on integrated 
filter characteristics
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Summary of Lecture 4

• Ladder type RLC filters converted to integrator based active filters

– All pole ladder type filters

• Convert RLC ladder filters to integrator based form

• Example: 5th order Butterworth filter

– High order ladder type filters incorporating zeros

• 7th order elliptic filter in the form of ladder RLC with zeros

– Sensitivity to component mismatch 

– Compare with cascade of biquads

Doubly terminated LC ladder filters _ Lowest sensitivity to 
component variations

• Convert to integrator based form utilizing SFG techniques

• Example: Differential high order filter implementation

– Effect of integrator non-idealities on continuous-time filter behavior

• Effect of integrator finite DC gain & non-dominant poles on filter 
frequency response 
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Real Integrator Non-Idealities
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Effect of Integrating Capacitor Series Resistance on 

Integrator Q
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Summary

Effect of Integrator Non-Idealities on Q

• Amplifier finite DC gain reduces the overall Q in the same manner as 
series/parallel resistance associated with passive elements

• Amplifier poles located above integrator unity-gain frequency enhance 
the Q! 

– If non-dominant poles close to unity-gain freq.  Oscillation

• Depending on the location of unity-gain-frequency, the two terms can 
cancel each other out!

• Overall quality factor of the integrator has to be much higher compared to 
the filter’s highest pole Q
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Effect of Integrator Non-Linearities on Overall 

Integrator-Based Filter Performance

• Dynamic range of a filter is determined by the ratio of maximum 
signal output with acceptable performance over total noise

• Maximum signal handling capability of a filter is determined by 
the non-linearities associated with its building blocks

• Integrator linearity function of opamp/R/C (or any other 
component used to build the integrator) linearity-

• Linearity specifications for active filters typically given in terms of :

–Maximum allowable harmonic distortion @ the output

–Maximum tolerable intermodulation distortion

– Intercept points & compression point referred to output or input
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Component Linearity versus Overall Filter Performance

1- Ideal Components
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Component Linearity versus Overall Filter Performance 

2- Semi-Ideal Components
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Effect of Component Non-Linearities on Overall Filter Linearity

Real Components including Non-Linearities
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Effect of Component Non-Linearities on Overall Filter Linearity

Real Components including Non-Linearities
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Effect of Component Non-Linearities on Overall Filter Linearity

Harmonic Distortion
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Example: Significance of Filter Harmonic Distortion in 

Voice-Band CODECs

• Voice-band CODEC filter (CODEC stands for coder-decoder, telephone 

circuitry includes CODECs with extensive amount of integrated active 

filters)

• Specifications includes limits  associated with  maximum allowable 

harmonic distortion at the output  (< typically < 1%  -40dB)

Vin Vout

1kHZ f
f1kHZ 3kHZ

CODEC Filter including Output/Input 

transfer characteristic non-linearities
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Example: Significance of Filter Harmonic Distortion in 

Voice-Band CODECs

• Specifications includes limits  associated with  maximum allowable 

harmonic distortion at the output  (< typically < 1%  -40dB)

• Let us assume filter output/input transfer characteristic:

• Note that with fixed HD3 requirements, larger 3 would result in smaller 

acceptable maximum signal levels and therefore reduces the overall 

dynamic range.

 Maximizing  dynamic range requires highly linear circuit components
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Effect of Component Non-Linearities on Overall Filter Linearity

Intermodulation Distortion
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Effect of Component Non-Linearities on Overall Filter Linearity

Intermodulation Distortion
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the closest to the fundamental signals on the frequency axis and thus most harmful
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Intermodulation distortion is measured in terms of IM2 and IM3:

Typically for input two sinusoids with equal amplitude ( 1 2 )
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Wireless Communications Measure of Linearity
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Wireless Communications Measure of Linearity Third Order Intercept Point
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Example: Significance of Filter Intermodulation 

Distortion in Wireless Systems

• Typical wireless receiver architecture

A/D 

Channel Select 

Filters
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Desired 
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Worst case signal scenario 

wrt linearity of the building 

blocks

 Two adjacent channels large 

compared to desired channel
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Example: Significance of Filter Intermodulation 

Distortion in Wireless Systems

• Adjacent channels can be as much as 60dB higher compared to the desired RX signal! 

• Notice that in this example, 3rd order intermodulation component associated with the 
two adjacent channel, falls on the desired channel signal!
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inV

Filter Linearity

• Maximum signal handling capability is usually determined by the 

specifications wrt harmonic distortion and /or intermodulation distortion 

Distortion in a filter is a function of linearity of the components

• Example: In the above circuit linearity of the filter is mainly a function of 

linearity of the opamp voltage transfer characteristics
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Various Types of Integrator Based Filter

• Continuous Time
– Resistive element based

• Opamp-RC

• Opamp-MOSFET-C

• Opamp-MOSFET-RC

– Transconductance (Gm) based
• Gm-C

• Opamp-Gm-C

• Sampled Data
– Switched-capacitor Integrator
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Continuous-Time Resistive Element Type Integrators

Opamp-RC & Opamp-MOSFET-C & Opamp-MOSFET-RC
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Continuous-Time Transconductance Type Integrator 

Gm-C & Opamp-Gm-C
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Integrator Implementation
Switched-Capacitor

-
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Main advantage: Critical frequency function of ratio of caps & clock freq.

 Critical filter frequencies (e.g. LPF -3dB freq.) very accurate
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Few Facts About Monolithic Rs & Cs & Gms
• Monolithic continuous-time filter critical frequency set by RxC or 

C/Gm

• Absolute value of integrated Rs & Cs & Gms are quite variable

–Rs vary due to doping and etching non-uniformities

• Could vary by as much as ~+-20 to 40% due to process & 
temperature variations

–Cs vary because of oxide thickness variations and etching 
inaccuracies

• Could vary ~ +-10 to15%

–Gms typically function of mobility, oxide thickness, current, 
device geometry …
• Could vary > ~ +- 40% or more with process & temp. & supply 

voltage

Integrated continuous-time filter critical frequency could 
vary by over +-50%
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Few Facts About Monolithic Rs & Cs

• While absolute value of monolithic Rs & Cs and gms

are quite variable, with special attention paid to layout, 

C & R & gms quite well-matched

– Ratios very accurate and stable over processing, 

temperature, and time

• With special attention to layout (e.g. interleaving, use 

of dummy devices, common-centroid geometries…):

– Capacitor mismatch << 0.1%

– Resistor mismatch < 0.1%

– Gm mismatch < 0.5%
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Impact of Component Variations on Filter 

Characteristics

NormCRLC Norm 1C CC1 r 1 *R 3dB

Norm *L RRLC Norm 2L L L2 r 2
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RLC Filters

Facts about RLC filters

• -3dB determined by 

absolute value of Ls & Cs 

• Shape of filter depends on 

ratios of normalized L & C
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Effect of  Monolithic R & C Variations on Filter 

Characteristics

• Filter shape (whether Elliptic with 0.1dB Rpass or Butterworth..etc) is a 

function of ratio of normalized Ls & Cs in RLC filters

• Critical frequency (e.g. -3dB ) function of absolute value of Ls xCs

• Absolute value of integrated Rs & Cs & Gms are quite variable

• Ratios very accurate and stable over time and temperature

What is the effect of on-chip component variations on 

monolithic filter frequency characteristics?
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Impact of Process Variations on Filter Characteristics
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Impact of Process Variations on Filter Characteristics
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Example: LPF Worst Case Corner Frequency Variations

• While absolute value of on-chip RC (gm-C) time-constants could vary by 

as much as 100% (process & temp.)

• With proper precautions, excellent component matching can be achieved:

 Well-preserved relative amplitude & phase vs freq. characteristics

 Need to only adjust (tune) continuous-time filter critical frequencies

Nominal Bandwidth

Worst case 

bandwidth

variation

Detailed passband

(note shape is well-retained)
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Tunable Opamp-RC Filters

Example

inV

oV

C=10pF

-

+

R=10KW

• 1st order Opamp-RC filter is designed to have a corner frequency of 1.6MHz 

• Assuming process variations of:

• C varies by +-10%

• R varies by +-25%

• Build the filter in such a way that the corner frequency can be adjusted post-

manufacturing.

R=10KW

Nominal R & C values

for 1.6MHz corner frequency
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Filter Corner Frequency Variations

• Assuming expected process variations of:

 Maximum C variations by +-10%

Cnom=10pF  Cmin=9pF,  Cmax=11pF

 Maximum R variations by +-25%

Rnom=10K Rmin=7.5K, Rmax=12.5K

 Corner frequency ranges from 

 2.357MHz to 1.157MHz

Corner frequency varies by +48% & -27%



EECS 247                                        Lecture 5:  Integrator-Based  Filters ©  2009 H.K.  Page 35

Variable Resistor or Capacitor

max
nom

min
nom

fR max 1.48

R fnom nom

max
nom

fR min

R fnom nom

min
nom

R 14.8k

0.72

R 7.2k

 

 

  W

  W

• In order to make provisions for filter to be tunable either R or C should be 

made adjustable  (this example adjustable R)

• Monolithic Rs can only be made adjustable in discrete steps (not 

continuous)

D0

R1 R2 R3 R4

D1D2

Variable Resister

MOS xtors act as switches

Dn high  switch acts as short circuit

 Dn low  switch open circuit
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Tunable Resistor

• Maximum C variations by +-10% Cmin=9pF,  Cmax=11pF

• Maximum R variations by +-25% Rmin=7.5K, Rmax=12.5K

Corner frequency varies by +48% & -27.%

• Assuming control signal has n = 3bit (0 or 1) for adjustment  R2=2R3=4R4

D0

R1 R2 R3 R4

D1D2

Variable Resister

MOS xtors act as switches

   

   

   

min
7.2nom1

n 1
minmax

4.34nom nom2 n

n 2
minmax

2.17nom nom3 n

n 3
minmax

1.08nom nom4 n

R R k

2
4R R R 14.8k 7.2k k

7
2 1

2
2R R R 14.8k 7.2k k

7
2 1

2
1R R R 14.8k 7.2k k

7
2 1

Tuning resolution 1.08k/10k 10%

 



 



 



 

W

    W


    W


    W


 
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Tunable Opamp-RC Filter

oV

C

-

+

inV

D0

R1 R2 R3 R4

R1

D1D2

R2 R3 R4

Post manufacturing:

•Set all Dx to 100 (mid point)

•Measure -3dB frequency

•If frequency too high decrement 

D to D-1

•If frequency too low increment 

D to D+1

•If frequency within 10% of the 

desired corner frequency stop

•else

D2  D1   D0      Rnom

1       1     1         7.2K

1 1     0         8.28K

1       0     1         9.37K

…………..

…………..

…………..

0       0     0       14.8K

For higher order filters, all filter integrators tuned simultaneously
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Tunable Opamp-RC Filters

Summary

• Program Cs and/or Rs to freq. tune the filter 

• All filter integrators tuned simultaneously

• Tuning in discrete steps & not continuous

• Tuning resolution limited

• Switch parasitic C & series R can affect the freq. response of the filter

Tunable Opamp RC Integrator
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Example: Tunable Low-Pass Opamp-RC Filter

Adjustable Capacitors
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+

+

-
-

+

+-
-

oV

Opamp RC Filters

• Advantages

– Since resistors are quite linear, 
linearity only a function of opamp 
linearity

 good linearity

• Disadvantages

– Opamps have to drive resistive 
load, low output impedance is 
required

High power consumption

– Continuous tuning not possible-
tuning only in discrete steps

– Tuning requires programmable Rs 
and/or Cs
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Integrator Implementation
Opamp-RC & Opamp-MOSFET-C & Opamp-MOSFET-RC

oV

C

-

+

R

inV

where
o o

o
in eq

V 1

V s CR





 

-

+


Opamp-RC
Opamp-MOSFET-C

Vtune

oV

C

-

+

R

inV
Vtune

oV

C

-

+

inV

Opamp-MOSFET-RC
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Use of MOSFETs as Variable Resistors

oV

C

-

+

R

inV

Opamp-RC Opamp-MOSFET-C

Vtune

oV

C

-

+

inV

Triode region

ID

VDS

VGS

MOSFET IV characteristic:

R replaced by MOSFET

Operating in triode mode

Continuously 

variable resistor:

Non-linear R
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Opamp MOSFET-C Integrator

Single-Ended Integrator

Problem: Single-ended MOSFET-C Integrator Effective R non-linear

Note that the non-linearity is mainly 2nd order type 

 

 

 

2
ds

2
i

W VCI V V VD ox gs th dsL 2

W VC V V VI ox gs th iD L 2

I WD V V VCG gs th ioxV Li







 
  

 

 
   

 


  



VG

oV

C

-

+

inV

ID

Tunable by varying VG:

By varying VG effective admittance is tuned

 Tunable integrator time constant
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Use of MOSFETs as Resistors

Differential Integrator

Opamp-MOSFET-C

VG
C

• Non-linear term is of even order & cancelled!

• Admittance independent of Vi

Problem: Threshold voltage dependence

+

+-

-
outV

Vi/2

-Vi/2

 

 
 

W VdsCI VV VD ox dsgs thL 2

VVW iiCI V VD1 ox gs thL 24

VVW iiCI V VD2 ox gs thL 24

W
V VCI I Vgs thD1 D2 ox iL

I I WD1 D2 V VCG gs thoxV Li











 
   

 

 
   

 

 
    

 

 

 
 



ID1

M1

M2

ID2

C
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Use of MOSFET as Resistor Issues

• Distributed nature of gate capacitance & channel resistance results 
in infinite no. of high-frequency poles:

 Excess phase @ the unity-gain frequency of the integrator

 Enhanced integrator Q

 Enhanced filter Q, 

Peaking in the filter passband

MOS xtor operating in triode region

Cross section view
Distributed channel resistance & 

gate capacitance
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Use of MOSFET as Resistor Issues

• Tradeoffs affecting the choice of device channel length:

– Filter performance mandates well-matched MOSFETs  long channel 
devices desirable

– Excess phase increases with L2 
 Q enhancement and potential for 

oscillation!

Tradeoff between device matching and integrator Q

This type of filter limited to low frequencies

MOS xtor operating in triode region

Cross section view
Distributed channel resistance & 

gate capacitance
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Example:

Opamp MOSFET-C Filter

• Suitable for low frequency 

applications

• Issues with linearity

• Linearity achieved ~40-

50dB

• Needs tuning

• Continuously tunable 5th Order Elliptic MOSFET-C LPF 

with 4kHz Bandwidth

Ref:   Y. Tsividis, M.Banu, and J. Khoury, “Continuous-Time MOSFET-C Filters in VLSI”, IEEE 

Journal of Solid State Circuits Vol. SC-21, No.1 Feb. 1986, pp. 15-30
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Improved MOSFET-C Integrator

VG1

C

No threshold voltage dependence

Linearity achieved in the order of 50-70dB

+

+-

-
outV

Vi/2

-Vi/2

VG3

ID1

M1

M2

ID2

M3

M4

IX1

IX2

 

 

W VdsCI VV VD ox dsgs thL 2

VVW iiCI V VD1 ox gs1 thL 24

VVW iiCI V VD3 ox gs3 thL 24

I I IX 1 D1 D3

VW V iiC V Vox gs1 gs3L 22

VW V iiCI V VX 2 ox gs3 gs1L 22

W
V VCI I Vgs1 gs3X 1 X 2 ox iL

I IX 1 X 2
G













 
   

 

 
   

 

 
    

 

 

 
   

 

 
   

 

 

 
  

W
V VC gs1 gs3oxV Li

 


C

Ref:    Z. Czarnul, “Modification of the Banu-Tsividis Continuous-Time Integrator Structure,” IEEE 

Transactions on Circuits and Systems, Vol. CAS-33, No. 7, pp. 714-716, July 1986.

M1,2,3,4 equal W/L
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R-MOSFET-C Integrator
VG1

C

•Improvement over MOSFET-C by adding resistor in series with MOSFET

•Voltage drop primarily across fixed resistor  small MOSFET Vds 

improved linearity & reduced tuning range

•Generally low frequency applications

+

+-

-
outV

Vi/2

-Vi/2

VG2

M1

M2

M3

M4

C

Ref:    U-K Moon, and B-S Song, “Design of a Low-Distortion 22-kHz Fifth Order Bessel Filter,” IEEE 

Journal of Solid State Circuits, Vol. 28, No. 12, pp. 1254-1264, Dec. 1993.

R

R
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R-MOSFET-C Lossy Integrator

VG1

C

Negative feedback around the non-linear MOSFETs improves linearity but 

compromises frequency response accuracy

+

+-

-
outV

Vi/2

-Vi/2

VG2

M1

M2

M3

M4

C

Ref:    U-K Moon, and B-S Song, “Design of a Low-Distortion 22-kHz Fifth Order Bessel Filter,” IEEE 

Journal of Solid State Circuits, Vol. 28, No. 12, pp. 1254-1264, Dec. 1993.

R1

R2

R2

R2
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Example:
Opamp MOSFET-RC Filter

Ref:    U-K Moon, and B-S Song, “Design of a Low-Distortion 22-kHz Fifth Order Bessel Filter,” IEEE 

Journal of Solid State Circuits, Vol. 28, No. 12, pp. 1254-1264, Dec. 1993.

• Suitable for low frequency, low Q applications

• Significant improvement in linearity compared to MOSFET-C

• Needs tuning

5th Order Bessel MOSFET-RC LPF 22kHz bandwidth

THD -90dB for 4Vp-p , 2kHz input signal
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Operational Amplifiers (Opamps)  versus 

Operational Transconductance Amplifiers (OTA)

• Output in the form of voltage

• Low output impedance 

• Can drive R-loads

• Good for RC filters,
OK for SC filters

• Extra buffer adds complexity, 
power dissipation

• Output in the form of current 

• High output  impedance

• In the context of filter design called 
gm-cells

• Cannot drive R-loads

• Good for SC & gm-C filters

• Typically, less complex compared to 
opamp higher freq. potential

• Typically lower power

Opamp OTA
Voltage controlled Voltage controlled

voltage source current source
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Integrator Implementation

Transconductance-C & Opamp-Transconductance-C

inV

oV
Gm

oV

C

inV

Gm

where
o o m

o
in

V G

V s C





 

-

+


GmC Intg. GmC-OTA Intg.

-

+
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Gm-C Filters

Simplest Form of CMOS Gm-C Integrator

• Transconductance element 
formed by the source-coupled 
pair M1 & M2

• All MOSFETs operating in 
saturation region

• Current in M1& M2 can be varied 
by changing Vcontrol

 Transconductance of M1& 
M2 varied through Vcontrol

Ref:      H. Khorramabadi and  P.R. Gray, “High Frequency CMOS continuous-time filters,” IEEE 

Journal of Solid-State Circuits, Vol.-SC-19, No. 6, pp.939-948, Dec. 1984. 

controlV

oV

inV

-

+

+

-

int gC
M1 M2

M10



EECS 247                                        Lecture 5:  Integrator-Based  Filters ©  2009 H.K.  Page 55

Simplest Form of CMOS Gm-C Integrator

AC Half Circuit

int gC

controlV

oV

inV

-

+

+

-

M1 M2

M10
controlV

oV

inV

-

+

+

-

int g2C

M1 M2

M10

inV
intg2C

M1

oV

AC half circuit

int gC

int g2C

controlV
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Gm-C Filters

Simplest Form of CMOS Gm-C Integrator

• Use ac half circuit & small signal 
model to derive transfer function:

M 1,2
o m in int g

M 1,2
o m

in int g

o o

in

M 1,2
m

o
int g

V g V 2C s

V g

V 2C s

V

V s

g

2 C





   

 




 


inV

intg2C

oVing Vm

CGS

inV
intg2C

M1

oV

AC half circuit

Small signal model
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Gm-C Filters

Simplest Form of CMOS Gm-C Integrator

• MOSFET in saturation region:

• Gm is given by:

 

 

 

2

M 1&M 2
m

1 / 2

C Wox V VI gs thd 2 L

I Wd V VCg gs thoxV Lgs

Id2
V Vgs th

1 W
C2 Iox d2 L










 






 
  

 

Id varied via Vcontrol 

 gm tunable via Vcontrol

controlV

oV

inV

-

+

+

-

int gC
M1 M2

M10
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Gm-C Filters

2nd Order Gm-C Filter

• Use the Gm-cell to build a 2nd order 
bandpass filter

controlV

oV

inV

-

+

+

-

int gC
M1 M2

M10



EECS 247                                        Lecture 5:  Integrator-Based  Filters ©  2009 H.K.  Page 59

2nd Order Bandpass Filter
1 1

*R

R
*

1

sCR

'
1V

2V

inV
1 1

1V

*R

sL

1

oV

'
3V

inV

1*R
R

2

1
s1

1
s



oV

--

* *
1 2R C L R   

oV

R CinI L CV

LI

+

-
CI

LV

+

-

+

-

RV

RI
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2nd Order Integrator-Based Bandpass Filter

inV

11
Q


1

s
1
s

BPV

-



BP 2
2in 1 2 2

* *
1 2

*

0 1 2

1 2

1 2 *0

V s
V s s 1

R C L R

R R

11

Q 1

From matching pointof v iew desirable :

1 RQ
R

L C











  

  

 

  

 


 

  



 

 

   
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2nd Order Integrator-Based Bandpass Filter

inV

11
Q


1
s

1
s

BPV

-
First implement this part

With transfer function:

0

in

0

V 1
V s 1

Q






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Terminated Gm-C Integrator

oV

inV

+

-

+

-

M1 M2

M10

controlV

M3 M4

M11

int gC

inV intg2C
M1

oV

AC half circuit

M3
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Terminated Gm-C Integrator

inV intg2C
M1

oV

AC half circuit

M3

o
M 3

in int g m
M 1 M 1
m m

V 1

V 2C g
s

g g






inV

intg2C

oVin
M 1

g Vm

CGS

Small signal model

M 3
gm

1

0

in

0

V 1
V s 1

Q





Compare to:
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Terminated Gm-C Integrator

o
M 3

in int g m
M 1 M 1
m m

M 1 M 1
m m

0 M 3
int g m

V 1

V s 2C g

g g

g g
& Q

2C g








 

inV

intg2C

oVin
M 1

g Vm

CGS

Small signal model

M 3
gm

1



inV

11
Q


1
s

1
s

BPV

-

0

in

0

V 1
V s 1

Q






Question: How to define Q accurately?
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Terminated Gm-C Integrator

int gC

controlV

oV

inV

+

-

+

-

M1 M2

M10

M3 M4

M11

1 / 2
M 1 M 1M 1
m d

M 1

1 / 2
M 3 M 3M 3
m d

M 3

1 / 2
M 1M 1

m d M 1
M 3 M 3

M 3m d

W1
Cg 2 Iox2 L

W1
Cg 2 Iox2 L

Let us assume equal channel lengths 

for M1, M3 then:

Ig W

Wg I





 
  

 

 
  

 

 
  
 
 

Vcontrol
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Terminated Gm-C Integrator

int gC

controlV

oV

inV

+

-

+

-

M1 M2

M10

M3 M4

M111 / 2

M 1 M 10
d d
M 3 M 11
d d

M 10
d M 10
M 11

M 11d

Note that: 

I I

I I

Assuming equal channel lengths for M10, M11:

I W

I W

M 1 Wg Wm M 10 M 1
M 3 Wg W M 3m M 11







 
 
  
 

 Vcontrol
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2nd Order Gm-C Filter

M1,2
m
M 3,4
m

g
Q

g


• Simple design

• Tunable

• Q function of device ratios: 


