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EE247 

Lecture 7

• Automatic on-chip filter tuning (continued from last lecture)

– Continuous tuning (continued)

• Replica single integrator in a feedback loop locked to a reference 

frequency

• DC tuning of resistive timing element

– Periodic digitally assisted filter tuning

• Systems where filter is followed by ADC & DSP, existing hardware 

can be used to periodically update filter freq. response

• Continuous-time filter design considerations

– Monolithic highpass filters

– Active bandpass filter design

• Lowpass to bandpass transformation

• Example: 6th order bandpass filter
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Summary last lecture

• Continuous-time filters (continued)
–Opamp MOSFET-C filters

–Opamp MOSFET-RC filters

–Gm-C filters

• Frequency tuning for continuous-time filters
–Trimming via fuses or laser 

–Automatic on-chip filter tuning

• Continuous tuning
–Master-slave tuning (to be continued)
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Master-Slave Frequency Tuning

3-Reference Integrator Locked to Reference Frequency

tuneV

Gm

C1

Vin

• Replica of main filter integrator e.g. Gm-C building block used 

• Utilizes the fact that a DC voltage source connected to the input of the 

Gm cell generates a constant current at the output proportional to the 

transconductance and the voltage reference

I = Gm.Vref

Replica of main filter Gm-C  

VC1

Vref

I=Gm*Vref
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Reference Integrator Locked to Reference Frequency

C1 ref
V Gm V T

C1
  

tuneV

Gm

C1

Vin

•Consider the following sequence:

 Integrating capacitor is fully 

discharged @ t =0 

 At t=0 the capacitor is 

connected to the output of the 

Gm cell then:

VC1

VC1 T

Vref

t=0 time

C1 C1 ref

C1 ref

Q V C1 Gm V T

V Gm V T
C1

    

   

t=0
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Reference Integrator Locked to Reference Frequency

clk

C1 N
T

Gm f
 

C1 ref
V Gm V T

C1
  

tuneV

Gm

CI

Since at the end of the period T:

If VC1 is forced to be equal to 

Vref then:

How do we manage to force 

VC1=Vref ?

 Use feedback!!

VC1

VC1 T

Vref

I=Gm*Vref

t=0 time

C1 ref
V Gm V T

C1
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Reference Integrator Locked to Reference Frequency

Clocking Scheme

• Three clock phase operation

• Non-overlapping signals P1, P2, P3 derived from a master clock (fclk)

• Note: T2=4/fclk and therefore accurate

T3

T2

T1

fclk

P1

P2

P3
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Reference Integrator Locked to Reference Frequency

S2

S1

S3

Gm

C1 C2

Vref

A

• Three clock phase operation 

• To analyze  study one phase 

at a time

Replica of main filter Gm 

Ref:   A. Durham, J. Hughes, and W. Redman- White, “Circuit Architectures for High Linearity Monolithic 

Continuous-Time Filtering,” IEEE Transactions on Circuits and Systems, pp. 651-657, Sept. 1992.

T3

T2

T1

P1

P2

P3
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Reference Integrator Locked to Reference Frequency 

P1 high S1 closed

S2

S1

S3

Gm

C1 C2

Vref

C1  discharged  VC1=0

C2 retains its previous charge

A

T3

T2

T1

P1

P2

P3
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Reference Integrator Locked to Reference Frequency

P2 high  S2 closed

S2 S3

Gm

C1 C2

Vref

A

I=Gm*Vref

P2

VC1

C1 ref
V Gm V T2

C1
  

T1 T2

C1  charged with constant current: I=Gm*Vref

C2 retains its previous charge
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Reference Integrator Locked to Reference Frequency 

P3 high  S3 closed

S2 S3

Gm

C1 C2

Vref

ADV

C1 charge shares with C2

Few cycles following startup system approaches steady state: 

 T2 T2 T3
C1 C2 C1,2

T3 T2 T2
C1,2 C1 C2

T3 T2 T2
C1,2 C1 C2

V C1 V C2 C1 C2 V

C1 C2
V V V

C1 C2 C1 C2

V V V
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Reference Integrator Locked to Reference Frequency 

P3 high  S3 closed

C1 charge shares with C2

Few cycles following startup 

Assuming A is large, feedback 

forces:

DV  0

 VC2= Vref

S2 S3

Gm

C1 C2

Vref

ADV

T3

T2

P3

VC1

VC2

Vref

Vref

0

0

T1
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Reference Integrator Locked to Reference Frequency 

P3 high  S3 closed

S2 S3

Gm

C1 C2

Vref

A

C1 C2

C1 ref

ref ref

V V Vref

since V Gm V T2
C1

then : V Gm V T2
C1

C1
or : T2 N / fclk

Gm

:
 

  

  

 

T3

T2

P3

VC1

VC2

Vref

Vref

0

0

T1
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Summary

Replica Integrator Locked to Reference Frequency

Feedback forces Gm to 

assume a value so that :

S2 S3

Gm

C1 C2

Vref

A

int g

int g
0

C1
N / fclk

Gm
or

Gm
fclk / N

C1





 

 

• Integrator time constant locked to an 

accurate frequency

• Tuning signal used to adjust the time 

constant of the main filter integrators

Tuning Signal

To Main Filter
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Issues

1- Loop Stability

S2 S3

Gm

C1 C2

Vref

A

• Note: Need to pay attention to loop stability

C1 chosen to be smaller than C2 – tradeoff between 

stability and speed of lock acquisition

Lowpass filter at the output of amplifier (A) helps stabilize 

the loop

Tuning Signal

To Main Filter
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Issues

2- GM-Cell DC Offset Induced Error

Problems to be aware of:

 Tuning error due to master integrator DC offset

S2 S3

Gm

C1 C2

Vref

A

To Main

Filter

int g
0

Gm
fclk / N

C1
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Issues 

Gm Cell DC Offset

What is DC offset?

Simple example: 

For the differential pair shown here, 

mismatch in input device or load 

characteristics would cause DC offset:

Vo = 0 requires a non-zero input 

voltage

Offset could be modeled as a small 

DC voltage source at the input for 

which with shorted inputs Vo = 0

Example: Differential Pair

oV

inV

-

+

+

-

M1 M2

Vos

Vtune



EECS 247                                                            Lecture 6:  Filters ©  2010 H.K.  Page 17

Simple Gm-Cell DC Offset

 
 

 
M 1,2

os ov1,2th1 th2

M 1,2

W
L1

V VV V
W2

L

D

 

Mismatch associated with the diff. pair: 

M1 & M2 

 DC offset

Assuming offset due to load device 

mismatch is negligible

oV

inV

-

+

+

-

M1 M2

Vos

Vtune

Ref:   Gray, Hurst, Lewis, Meyer, Analysis & Design of Analog Integrated Circuits, Wiley 2001, page 335

EECS 247                                                            Lecture 6:  Filters ©  2010 H.K.  Page 18

Gm-Cell Offset Induced Error

 

C1 C2

C1 ref

C1 osref

os

ref

V V Vref

Ideal V Gm V T 2
C1

with offset : V Gm V V T 2
C1

VC1
or : T 2 1

Gm V

:
 

  

   

 
  
 
 

Vref

Vos S2 S3

Gm

C1 C2

A

I=Gm(Vref - Vos)

•Effect of Gm-cell DC offset: 

Voltage source

representing 

DC offset
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Gm-Cell Offset Induced Error

os
crit ical

ref

os

ref

VC1 Gm
T 2 1 f

Gm C1V

V
for 1/ 10

V

10% error in tuning!

 
   
 
 



Vref

Vos S2 S3

Gm

C1 C2

A

I=Gm(Vref-Vos)

• Example: 

EECS 247                                                            Lecture 6:  Filters ©  2010 H.K.  Page 20

Gm-Cell Offset Induced Error

Solution Example

int gC

•Assume differential integrator

•Add a pair of auxiliary inputs to the 

input stage of the master Gm-cell for 

offset cancellation purposes oV

main
inV

+

-

+

-

M1 M2

M3 M4

-

+

aux.
inV

+

-

-
+

+

-

Main

Input
Aux.

Input
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Simple Gm-Cell 

AC Small Signal Model 

in1 in2
M1 M 3

g V g Vm min1 in2
M1 M 3

g V g Vm m

intg2C
M1

oV

AC half circuit

intg2C

oV

CGS1

Small signal model

or
Vin1

Vin1

 M 1 oo o om in1 int g

M 1
M 1m o

o in1 m o
int g o

M 1
m

o in1 o in1
int g int g

M 1
m

1r ||V r  is parallel combination of r of M1 & loadg V s 2C

g r
V V & g r a1 Integrator finite DC gain

1 s 2C r

a1 g
V V Note : a1 , V V

a1 s 2C s 2C
1

g

 
   


  

 

 
   

  


gM1Vin1
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Simple Gm-Cell + Auxiliary Inputs

AC Small Signal Model

in1 in2
M1 M 3

g V g Vm min1 in2
M1 M 3

g V g Vm m

intg2C
M1

oV

AC half circuit

M3 intg2C

oV

CGS1

Small signal model

or
Vin1 Vin2 CGS3

Vin1 Vin2

 M 1 M 3 oo o om in1 m in2 int g

M 1 M 3
m o m o

o in1 in2
int g o int g o

o in1 in2
int g int g

M 1 M 3
m m

1r ||V r  parallel combination of r of M1, M3, & current sourceg V g V s 2C

g r g r
V V V

1 s 2C r 1 s 2C r

a1 a3
V V V

a1 s 2C a3 s 2C
1 1

g g

     


 

   

 
   

 

gM1Vin1 gM3Vin2
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Gm-Cell 

DC Model

aux.
inV

 o in2in1 osV a1 a3 VV V 

oV

main
in in1V V

+

-

+

-

M1 M2

M3 M4

-

+

+

-

-

+

+

-

Main

Input
Aux.

Input

Vos

aux
in in2V V

int gC

oV
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Gm-cell  two sets of input pairs 

Aux. input pair + C3a,b  Offset cancellation 

Same clock signals needed

Reference Integrator Locked to Reference Frequency
Offset Cancellation Incorporated

+

-

-

+

P2

P2B
-

+

P3

P1

+

-

+

-

P1

P2

P3

P2B

P3

P2 P3

P2

Vcm

+Vref/2

-Vref/2

Vtune 

C1 C2
C3a

C3b

T3

T2

T1

P1

P2

P3
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Reference Integrator Locked to Reference Frequency

P3 High (Update & Store offset)

out osV V

osV
+

-

-

+

-

+

+

-

+

-

Vcm

+Vref/2

-Vref/2

Vtune 

C1 C2

C3a

C3b

Gm-cell  Unity gain configuration via aux. inputs

Main inputs shorted

C1, C2 Charge sharing

T3

T2

T1

P1

P2

P3
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Reference Integrator During Offset Cancellation Phase

out osV V

C3a

C3b

+

-

-

+

+

-

 o in2in1 os

in2 o

o os o

o os

o os in2 os

V a1 a3 VV V

V V

V a1 V a3 V

a1
V V

1 a3

Assuming a1 a3 1

V V & V V

 

 

   

  


 

  

C3a,b  Store main Gm-cell offset

0

osC3a,b
V V 

osV
Vcm
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Reference Integrator Locked to Reference Frequency

P3 High (Update & Store offset)

out osV V

osV
+

-

-

+

-

+

+

-

+

-

Vcm

+Vref/2

-Vref/2

Vtune 

C1 C2

C3a

C3b

Gm-cell  Unity gain configuration via aux. inputs

Main input shorted

C3a,b  Store Gm-cell offset

C1, C2 Charge sharing

osC3a,b
V V 

T3

T2

T1

P1

P2

P3
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Reference Integrator Locked to Reference Frequency

P1 High (Reset)

+

-

-

+

-

+

+

-

+

-

Vcm

+Vref/2

-Vref/2

Vtune 

C1 C2

C3a

C3b

Gm-cell  Reset.

C1  Discharge

C2  Hold Charge

C3a,b  Hold Charge

Offset previously stored on C3a,b  

cancels gm-cell offset

osV

osC3a,b
V V 

T3

T2

T1

P1

P2

P3
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Reference Integrator Locked to Reference Frequency

P2 High (Charge)

osV
+

-

-

+

-

+

+

-

+

-

Vcm

+Vref/2

-Vref/2

Vtune 

C1

C2
C3a

C3b

osC3a,b
V V 

Gm-cell  Charging C1 

C3a,b  Store/hold Gm-cell offset

C2  Hold charge

I=gm1(Vref -Vos)-( -gm3Vos )

 I=gm1xVref
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Summary

Reference Integrator Locked to Reference Frequency

Key point: Tuning error due to Gm-cell offset cancelled

*Note:  Same offset compensation technique can be used in many other 

applications

out osV V

osV
+

-

-

+

-

+

+

-

+

-

Vcm

+Vref/2

-Vref/2

Vtune 

C1 C2

C3a

C3b
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Summary
Reference Integrator Locked to Reference Frequency

Feedback forces Gm to vary so that :

S2 S3

Gm

C1 C2

Vref

A

int g

int g
0

C1
N / fclk

Gm
or

Gm
fclk / N

C1





 

 

Tuning error due to gm-cell 

offset voltage resolved

Advantage over previous 

schemes:

 fclk can be chosen to be at 

much higher frequencies 

compared to filter bandwidth

(N >1)

 Feedthru of clock falls out 

of band and  thus attenuated 

by filter however, beware of 

feedthru of the three phase 

clock signals
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DC Tuning of Resistive Timing Element

Vtune 
Tuning circuit Gm  replica of Gm 

used in filter

Rext used to lock Gm to accurate 

off-chip R

Feedback forces: 

IxRext @ Gm-cell input

Current flowing in Gm-Cell

I Gm=1/Rext

Issues with DC offset

Account for capacitor  variations in 

this Gm-C implementation by 

trimming C in the factory

Rext.

-

+
-

+

I

I

Gm

Ref: C. Laber and P.R. Gray,  “A 20MHz 6th Order BiCMOS Parasitic Insensitive Continuous-time Filter 

and Second Order Equalizer Optimized for Disk Drive Read Channels,” IEEE Journal of Solid State 

Circuits, Vol. 28, pp. 462-470, April 1993 
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Digitally Assisted Frequency Tuning 

Example: Wireless Receiver Baseband Filters

• Systems where filter is followed by ADC & DSP

– Take advantage of existing digital signal processor capabilities to 
periodically test & if needed update the filter critical frequency

– Filter tuned only at the outset of each data transmission session (off-
line/periodic tuning) – can be fine tuned during times data is not 
transmitted or received

RF 
Amp

Osc.

A/D 

Digital 
Signal 

Processor 
(DSP)

A/D 

p 2

IF Stage 
( 0 to 2 ) 
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Example: Seventh Order Tunable Low-Pass OpAmp-RC Filter
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Digitally Assisted Filter Tuning Concept

Assumptions:

– System allows a period of 

time for the filter to undergo 

tuning (e.g. for a wireless 

transceiver during idle 

periods)

– An AC (e.g. a sinusoid) signal 

can be generated on-chip 

whose amplitude is a function 

of an on-chip DC voltage 

• AC signal generator outputs a 

sinusoid with peak voltage 

equal to the DC signal source

• AC Signal Power =1/2 DC 

signal power @ the input of the 

filter

VP
AC=VDC
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Digitally Assisted Filter Tuning Concept

VP
AC=VDC

AC signal @ a frequency on the roll-off of the desired filter frequency response

(e.g. -3dB frequency)

Provision can be made  during the tuning cycle, the input of the filter is 

disconnected from the previous stage (e.g. mixer) and connected to:

1. DC source

2. AC source 

under the control of the DSP 

 desired
AC DC 3dB

V V sin 2 f tp
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Digitally Assisted Filter Tuning Concept

VP
AC=VDC
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2DD

Practical Implementation of Frequency Tuning

AC Signal Generation From DC Source

Vout

Clock

ClockB

Vout0

D

D

D Vout=

Clock=high

D D Vout= D

ClockB=high

Square waveform generated  2D peak to peak magnitude and @ frequency=fclock

Clock ClockB
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D
2DD

DC Measurement AC Measurement

A/D 
4bit 

10MHz

Digital  
Signal  

Processor

DSP1616 
40MHzVref+

Vref-

Register

C
H

O
P

T
U

N
E

F
R

E
Q

.

C
O

N
T
.

6
2
5
k
H

z

Practical Implementation of Frequency Tuning
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2DD

AC 

Measurement

Practical Implementation of Frequency Tuning

Effect of Using a Square Waveform

   
n 1,3,5,..

4Vin sin n t
n

t p 


 D
 

• Input signal chosen to be a square wave due to ease of generation

• Filter input signal comprises a sinusoidal waveform @ the fundamental 

frequency + its odd harmonics:

Key Point: The filter itself attenuates unwanted odd harmonics 

 Inaccuracy incurred by the harmonics negligible

   4 1
Vout sin t

2
t p 

D 
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Simplified Frequency Tuning Flowchart
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Digitally Assisted Offset Compensation
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Filter Tuning Prototype Diagram
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Measured Tuning Characteristics
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Off-line Digitally Assisted Tuning
• Advantages:

– No reference signal feedthrough since tuning does not 

take place during data transmission (off-line)

– Minimal additional hardware

– Small amount of programming

• Disadvantages:

– If acute temperature change during data transmission, 

filter may slip out of tune!

• Can add fine tuning cycles during periods when data is 

not transmitted or received

Ref: H. Khorramabadi, M. Tarsia and N.Woo, “Baseband Filters for IS-95 CDMA Receiver Applications 

Featuring Digital Automatic Frequency Tuning,” 1996 International Solid State Circuits Conference, pp. 

172-173.
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Summary: Continuous-Time Filter Frequency Tuning
• Trimming

Expensive & does not account for temperature and supply etc… variations

• Automatic frequency tuning

– Continuous tuning

Master VCF used in tuning loop, same tuning signal used to tune the slave (main) 
filter

– Tuning quite accurate

– Issue  reference signal feedthrough to the filter output

Master VCO used in tuning loop

– Design of reliable & stable VCO challenging

– Issue  reference signal feedthrough

Single integrator in negative feedback loop forces time-constant to be a function of 
accurate clock frequency

– More flexibility in choice of reference frequency  less feedthrough issues

DC locking of a replica of the integrator to an external resistor

– DC offset issues & does not account for integrating capacitor variations

– Periodic digitally assisted tuning

– Requires digital capability + minimal additional hardware

– Advantage of no reference signal feedthrough since tuning performed off-line
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RLC Highpass Filters

• Any RLC lowpass and values derived from tables can be 

converted to highpass by:

–Replacing all Cs by Ls and LNorm
HP = 1/ CNorm

LP

–Replacing all Ls by Cs and CNorm
HP = 1/ LNorm

LP

– LHP=Lr / CNorm
LP , CHP=Cr / LNorm

LP where Lr=Rr/r and Cr=1/(Rrr)

Rs

C1 C3

L2

inV
Rs

L1 L3

C2

inV

C4

L4

Lowpass Highpass
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Integrator Based High-Pass Filters
1st Order

• Conversion of simple high-pass RC filter to 

integrator-based type by using signal flowgraph 

technique

in

s CV Ro

s CV 1 R




oV

R

C

inV
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1st Order Integrator Based High-Pass Filter

Signal Flowgraph
oV

R

C

inV

+ VC - +

VR

-

IC

IRV V VR in C

1
V IC C

sC

V Vo R

1
I VR R R

I IC R

 

 



 



1

1

R

1

sC

RICI

CV

inV

1

1

SFG

oV1VR
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1st Order Integrator Based High-Pass Filter

SGF

1

sC R


oV
inV 1 1

oV

R

C

inV

oVinV

 -

SGF

Note: Addition of an integrator in the feedback path  High pass frequency shaping

+

+

+ VC- + 

VR

-
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Addition of Integrator in Feedback Path

oVinV

 -

a

1/s

Let us assume flat gain in forward path (a)

Effect of addition of an integrator in the 

feedback path:
+

+

in

in

int g
pole o

V ao

V 1 af

sV ao

s sV 1 a / 1 / a

a
zero@ DC & pole @ a



 

 





 
 

     

Note:  For large forward path gain, a, can implement high pass function with high 

corner frequency 

Addition of an integrator in the feedback path  zero @ DC + pole @ ax0
intg

This technique used for offset cancellation in systems where the low frequency 

content is not important and thus disposable



EECS 247                                                    Lecture 7:  Filters ©  2010 H.K.  Page 53

 H j

 H j

Lowpass Highpass



 H j



Q<5

Q>5

• Bandpass filters  two cases:

1- Low Q or wideband (Q < 5)   

 Combination of lowpass & highpass

2- High Q or narrow-band (Q > 5)

 Direct implementation



 H j

+

Bandpass Filters

Bandpass

Bandpass
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Narrow-Band Bandpass Filters

Direct Implementation
• Narrow-band BP filters  Design based on lowpass prototype

• Same tables used for LPFs are also used for BPFs

Lowpass Freq. Mask Bandpass Freq. Mask

c

c

s s2 s1

c B2 B1

s
s Q

s
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Lowpass to Bandpass Transformation

S-plane Comparison

Lowpass pole/zero (s-plane) Bandpass pole/zero (s-plane)

From:  Zverev, Handbook of filter synthesis,  Wiley, 1967- p.156.

Pole

Zero
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Lowpass to Bandpass Transformation Table

From: 

Zverev, 

Handbook of filter synthesis, 

Wiley, 1967- p.157.

'

'

'

'

1

1

1 1

r r

r

r

r

r

r r

C QC
R

R
L

QC

R
L QL

C
RQL









 

 

 

 

C

L

C’

LP BP BP Values

L C

L’

Lowpass RLC filter 

structures & tables 

used to derive 

bandpass filters

' 'C &L  are normilzed LP values

filterQ Q
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Lowpass to Bandpass Transformation

Example: 3rd Order LPF  6th Order BPF

• Each capacitor replaced by parallel L& C

• Each inductor replaced by series L&C

oVL2 C2

Rs

C1
C3

inV RLL1 L3

Rs

C1’ C3’

L2’

inV RL

oV

Lowpass Bandpass
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Lowpass to Bandpass Transformation

Example: 3rd Order LPF  6th Order BPF

'
1 1

0

1 '
01

2 '
02

'
2 2

0

'
3 3

0

3 '
03

1

1

1 1

1

1

C QC
R

R
L

QC

C
RQL

R
L QL

C QC
R

R
L

QC













 

 

 

 

 

 

oVL2 C2

Rs

C1
C3

inV RLL1 L3

Where:

C1
’ , L2

’  , C3
’
 Normalized lowpass values

Q  Bandpass filter quality factor  

0  Filter center frequency
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Lowpass to Bandpass Transformation

Signal Flowgraph

oVL2 C2

Rs

C1
C3

inV RLL1 L3

1- Voltages & currents named for all components

2- Use KCL & KVL to derive state space description 

3- To have BMFs in the integrator form 

Cap. voltage expressed as function of its current VC=f(IC)

Ind. current as a function of its voltage IL=f(VL)

4- Use state space description to draw SFG

5- Convert all current nodes to voltage 
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Signal Flowgraph

6th Order BPF versus 3rd Order LPF

1

*R

Rs


*
1

1

sC R

1

*R

Rs
 *

1

1

sC R

1

*

1

R

sL


1

1

*R

RL


*
3

1

sC R

*

3

R

sL


*
2

1

sC R
*

2

R

sL

1

V1’

V2

V3’

V1

V2’

VoutVin
V3

inV 1 1V oV11

1 1V1’ V3’
V2’

*

2

R

sL

*R

RL


V2

*
3

1

sC R

LPF

BPF
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Signal Flowgraph

6th Order Bandpass Filter

1

*R

Rs
 *

1

1

sC R

1

*

1

R

sL


1

1

*R

RL
*

3

1

sC R

*

3

R

sL


*
2

1

sC R
*

2

R

sL

1

Note: each C & L in the original lowpass prototype  replaced by a resonator

Substituting the bandpass  L1, C1,….. by their normalized lowpass equivalent from 

page 58

The resulting SFG is:

1

V1’

V2

V3’

V1

V2’

VoutVin
V3
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Signal Flowgraph

6th Order Bandpass Filter

1

*R

Rs


0

1
'

QCs



1

'
1 0Q C

s




1

1

*R

RL


'

3

0

Q Cs


'
3 0Q C

s




2 0
'

QL

s




0

2
'

QLs



1

• Note the integrators  different time constants

• Ratio of time constants for two integrator in each resonator loop~ Q2

 Typically, requires high component ratios

 Poor matching

• Desirable to modify SFG so that all integrators have equal time constants for 

optimum matching.

• To obtain equal integrator time constant  use node scaling

1

V1’

V2

V3’

V1

V2’

VoutVin V3
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Signal Flowgraph

6th Order Bandpass Filter

'
1

1
QC



'
2

1
QL

*

'
1

R 1

Rs QC
 

0

s



1

0

s




'
2

1
QL



'
3

1
QC

*

'
3

R 1

RL QC
 

0

s


0

s




0

s


0

s



• All integrator time-constants  equal

• To simplify implementation  choose RL=Rs=R*

1

V1’/(QC1’)

V2 /(QL2’)

V3’/(QC3’)

V1
V3

V2’

Vin
Vout
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Signal Flowgraph

6th Order Bandpass Filter

'
2

1
QL

'
1

1

QC
 0

s



1

0

s




'
2

1
QL



'
3

1
QC

'
3

1

QC
0

s


0

s




0

s


0

s



'
1

1
QC



Let us try to build this bandpass filter using the simple Gm-C structure 

1Vin
Vout
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Second Order Gm-C Filter

Using Simple Source-Couple Pair Gm-Cell

• Center frequency:

• Q function of: 

Use this structure for the 1st and the 3rd resonator

Use similar structure w/o M3, M4 for the 2nd resonator

How to couple the resonators?

M 1,2
m

o
int g

M 1,2
m
M 3,4
m

g

2 C

g
Q

g
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Coupling of the Resonators

1- Additional Set of Input Devices

Coupling of resonators:

Use additional input source coupled pairs for the highlighted integrators 

For example, the middle integrator requires 3 sets of inputs

'
2

1
QL

'
1

1

QC
 0

s



1

0

s




'
2

1
QL



'
3

1
QC

'
3

1

QC
0

s


0

s




0

s


0

s



'
1

1
QC



1Vin
Vout
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Example: Coupling of the Resonators

1- Additional Set of Input Devices

int gC

Add one source couple pair for each 

additional input 

Coupling level  ratio of device 

widths

Disadvantage  extra power 

dissipation

oV

main
inV

+

-

+

-

M1 M2

M3 M4

-

+

coupling
inV

+

-

-
+

+

-

Main

Input

Coupling

Input
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Coupling of the Resonators

2- Modify SFG  Bidirectional Coupling Paths

' '
1 2

1

Q C L

'
1

1

QC
 0

s



inV 1

0

s




' '
3 2

1

Q C L


'
1

' '
3 2

C

QC L

3

1

QC'
0

s


0

s




0

s


0

s



1
' 'Q C L1 2



Modified signal flowgraph to have equal coupling between resonators

• In most filter cases C1
’ = C3’

• Example: For a butterworth lowpass filter C1’ = C3’ 1 & L2’=2

• Assume desired overall bandpass filter Q=10

outV1
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Sixth Order Bandpass Filter Signal Flowgraph



1

Q
 0

s



inV 1

0

s




1

Q
0

s

0

s




0

s


0

s



outV1



1

Q 2

1

14









• Where for a Butterworth shape

• Since in this example Q=10 then:  

EECS 247                                                    Lecture 7:  Filters ©  2010 H.K.  Page 70

Sixth Order Bandpass Filter Signal Flowgraph

SFG Modification

1

Q


0

s



inV 1

0

s




1

Q
0

s

0

s


0

s




0

s



outV1



2
0

s




 
 
 





2
0

s


  

 
 





EECS 247                                                    Lecture 7:  Filters ©  2010 H.K.  Page 71

Sixth Order Bandpass Filter Signal Flowgraph

SFG Modification

2
0

1




 
 

 

For narrow band filters (high Q) where frequencies within the passband are 

close to 0   narrow-band approximation can be used:

Within filter passband:

The resulting SFG:

22
00

js
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Sixth Order Bandpass Filter Signal Flowgraph

SFG Modification

1

Q


0

s



inV 1

0

s




1

Q
0

s

0

s


0

s




0

s



outV1







Bidirectional coupling paths, can easily be implemented with coupling 

capacitors  no extra power dissipation




