EE247 Lecture 8

- Continuous-time filter design considerations
 - Monolithic highpass filters
 - Active bandpass filter design
 - Lowpass to bandpass transformation
 - Example: 6th order bandpass filter
 - Gm-C bandpass filter using simple diff. pair
 - -Various Gm-C filter implementations
- Performance comparison of various continuous-time filter topologies
- Introduction to switched-capacitor filters

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 1

Summary Lecture 7

- Automatic on-chip filter tuning (continued from last lecture)
 - Continuous tuning (continued)
 - Replica single integrator in a feedback loop locked to a reference frequency
 - DC tuning of resistive timing element
 - Periodic digitally assisted filter tuning
 - Systems where filter is followed by ADC & DSP, existing hardware can be used to periodically update filter freq. response

RLC Highpass Filters

- Any RLC lowpass and values derived from tables can be converted to highpass by:
 - -Replacing all Cs by Ls and $L_{Norm}^{HP} = 1/C_{Norm}^{LP}$
 - -Replacing all Ls by Cs and $C_{Norm}^{HP} = 1/L_{Norm}^{LP}$
 - $-L^{HP}{=}L_r/~C_{Norm}^{~~LP}~,~C^{HP}{=}C_r/~L_{Norm}^{~~LP}~~where~L_r{=}R/\omega_r \text{and}~~C_r{=}1/(R_r\omega_r)$

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 3

Integrator Based High-Pass Filters 1st Order

 Conversion of simple high-pass RC filter to integrator-based type by using signal flowgraph technique

$$\frac{V_o}{V_{in}} = \frac{sRC}{I+sRC}$$

1st Order Integrator Based High-Pass Filter Signal Flowgraph

EECS 247 Lecture 8: Filters © 2010 H.K. Page 5

1st Order Integrator Based High-Pass Filter SGF

Note: Addition of an integrator in the feedback path → High pass frequency shaping

EECS 247 Lecture 8: Filters © 2010 H.K. Page 6

Addition of Integrator in Feedback Path

Let us assume flat gain in forward path (*a*) Effect of addition of an integrator in the feedback path:

$$\begin{split} \frac{V_O}{V_{in}} &= \frac{a}{1+af} \\ \frac{V_O}{V_{in}} &= \frac{a}{1+a/s\,\tau} = \frac{s\,\tau}{1+s\,\tau/a} \end{split}$$

$$\rightarrow$$
 zero@DC & pole@ $\omega_{pole} = -\frac{a}{\tau} = -a \times \omega_o^{intg}$

Note: For large forward path gain, a, can implement high pass function with high corner frequency

Addition of an integrator in the feedback path \rightarrow zero @ DC + pole @ $ax\omega_0^{intg}$ This technique used for offset cancellation in systems where the low frequency content is not important and thus disposable

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 7

Bandpass Filters

- Bandpass filters → two cases:
 - 1- Low Q or wideband (Q < 5)
 - → Combination of lowpass & highpass

- 2- High Q or narrow-band (Q > 5)
 - → Direct implementation

Narrow-Band Bandpass Filters Direct Implementation • Narrow-band BP filters → Design based on lowpass prototype

- · Same tables used for LPFs are also used for BPFs

$$s \Rightarrow Q \times \left[\frac{s}{\omega_c} + \frac{\omega_c}{s} \right]$$

$$\frac{\Omega_s}{\Omega_c} \Rightarrow \frac{\Omega_{s2} - \Omega_{s1}}{\Omega_{B2} - \Omega_{B1}}$$

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 9

Lowpass to Bandpass Transformation S-plane Comparison

From: Zverev, Handbook of filter synthesis, Wiley, 1967- p.156.

EECS 247

Lecture 8: Filters

Lowpass to Bandpass Transformation Table

Lowpass RLC filter structures & tables used to derive bandpass filters

$$Q = Q_{filter}$$

From: Zverev, Handbook of filter synthesis, Wiley, 1967- p.157.

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 11

Lowpass to Bandpass Transformation Example: 3^{rd} Order LPF \rightarrow 6^{th} Order BPF

Lowpass

$V_{in} \bigoplus_{\underline{=}}^{Rs} \underbrace{\begin{array}{c} V_o \\ L2' \\ \underline{=} \end{array}} \longrightarrow V_{in}$

Bandpass

- Each capacitor replaced by parallel L& C
- · Each inductor replaced by series L&C

EECS 247

Lecture 8: Filters

Lowpass to Bandpass Transformation Example: 3rd Order LPF → 6th Order BPF

$$C_1 = QC_1 \times \frac{1}{R\omega_0}$$

$$L_1 = \frac{1}{QC_1} \times \frac{R}{\omega_0}$$

$$C_2 = \frac{1}{QL_2} \times \frac{1}{R\omega_0}$$

$$L_2 = QL_2 \times \frac{R}{\omega_0}$$

$$C_3 = QC_3' \times \frac{1}{R\omega_0}$$

$$L_3 = \frac{1}{QC_3} \times \frac{R}{\omega_0}$$

Where:

- C_1 , L_2 , C_3 \rightarrow Normalized lowpass values Q \rightarrow Bandpass filter quality factor
 - → Bandpass filter quality factor

→ Filter center frequency

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 13

Lowpass to Bandpass Transformation Signal Flowgraph

- 1- Voltages & currents named for all components
- 2- Use KCL & KVL to derive state space description
- 3- To have BMFs in the integrator form Cap. voltage expressed as function of its current $V_C = f(I_C)$ Ind. current as a function of its voltage $I_L = f(V_L)$
- 4- Use state space description to draw SFG
- 5- Convert all current nodes to voltage

EECS 247

Signal Flowgraph 6th Order Bandpass Filter

Note: each C & L in the original lowpass prototype \rightarrow replaced by a *resonator* Substituting the bandpass $L1, C1, \ldots$ by their normalized lowpass equivalent from page 13

The resulting SFG is:

EECS 247

Lecture 8: Filters

Signal Flowgraph 6th Order Bandpass Filter

- Note the integrators → different time constants
 - Ratio of time constants for two integrator in each resonator loop~ Q^2
 - → Typically, requires high component ratios
 - → Poor matching
- Desirable to modify SFG so that <u>all integrators have equal time constants for</u> optimum matching.

© 2010 H.K. Page 17

© 2010 H.K. Page 18

• To obtain equal integrator time constant → use node scaling

EECS 247 Lecture 8: Filters

Signal Flowgraph 6th Order Bandpass Filter

- All integrator time-constants → equal
- To simplify implementation \rightarrow choose $RL=Rs=R^*$

EECS 247 Lecture 8: Filters

Signal Flowgraph 6th Order Bandpass Filter

Let us try to build this bandpass filter using the simple Gm-C structure

Lecture 8: Filters

EECS 247

Second Order Gm-C Filter Using Simple Source-Couple Pair Gm-Cell

• Center frequency:

$$\omega_o = \frac{g_m^{M1,2}}{2 \times C_{into}}$$

• Q function of:

$$Q = \frac{g_m^{M1,2}}{g_m^{M3,4}}$$

Use this structure for the 1^{st} and the 3^{rd} resonator Use similar structure w/o M3, M4 for the 2^{nd} resonator How to couple the resonators?

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 20

Coupling of the Resonators 1- Additional Set of Input Devices

Coupling of resonators:

Use additional input source coupled pairs for the highlighted integrators For example, the middle integrator requires 3 sets of inputs

EECS 247 Lecture 8: Filters © 2010 H.K. Page 21

Example: Coupling of the Resonators 1- Additional Set of Input Devices

- Add one source couple pair for each additional input
- ■Coupling level → ratio of device widths
- ■Disadvantage → extra power dissipation

EECS 247 Lecture 8: Filters

Coupling of the Resonators 2- Modify SFG → Bidirectional Coupling Paths

Modified signal flowgraph to have equal coupling between resonators

- In most filter cases $C_1' = C_3'$
- Example: For a butterworth lowpass filter $C_1' = C_3' = 1 \& L_2' = 2$
- Assume desired overall bandpass filter Q=10

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 23

Sixth Order Bandpass Filter Signal Flowgraph

- Where for a Butterworth shape $\gamma = \frac{1}{Q\sqrt{2}}$
- Since in this example Q=10 then: $\gamma \approx \frac{1}{14}$

EECS 247

Lecture 8: Filters

Sixth Order Bandpass Filter Signal Flowgraph SFG Modification

EECS 247

Lecture 8: Filters

© 2010 H.K. Page 25

Sixth Order Bandpass Filter Signal Flowgraph SFG Modification

For narrow band filters (high Q) where frequencies within the passband are close to ω_0 narrow-band approximation can be used:

Within filter passband:

$$\left(\frac{\omega_0}{\omega}\right)^2 \approx 1$$

$$\gamma \times \left(\frac{\omega_0}{s}\right)^2 = \gamma \times \left(\frac{\omega_0}{j\omega}\right)^2 \approx -\gamma$$

The resulting SFG:

Sixth Order Bandpass Filter Signal Flowgraph SFG Modification

Bidirectional coupling paths, can easily be implemented with coupling capacitors → no extra power dissipation

EECS 247 Lecture 8: Filters © 2010 H.K. Page 27

Sixth Order Gm-C Bandpass Filter Utilizing Simple Source-Coupled Pair Gm-Cell

EECS 247

Lecture 8: Filters

Sixth Order Gm-C Bandpass Filter Narrow-Band versus Exact Frequency Response Simulation

EECS 247 Lecture 8: Filters © 2009 H.K. Page 29

Simplest Form of CMOS Gm-Cell Nonidealities

DC gain (integrator Q)

$$a = \frac{g_m^{M\, l,2}}{g_0^{M\, l,2} + g_{load}}$$

$$a = \frac{2L}{\theta \left(V_{gs} - V_{th} \right)_{ML2}}$$

Small Signal Differential Mode Half-Circuit

• Where a denotes DC gain & θ is related to channel length modulation (λ)by:

$$\lambda = \frac{\theta}{L}$$

· Seems no extra poles!

CMOS Gm-Cell High-Frequency Poles

Cross section view of a MOS transistor operating in saturation

Distributed channel resistance & gate capacitance

• Distributed nature of gate capacitance & channel resistance results in infinite no. of high-frequency poles

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 31

CMOS Gm-Cell High-Frequency Poles

$$P_2^{\text{effective}} \approx \frac{1}{\sum_{i=2}^{\infty} \frac{1}{P_i}}$$

 $P_2^{effective} \approx 2.5 \omega_t^{M1,2}$

High frequency behavior of an MOS transistor operating in saturation region

$$\omega_t^{M1,2} = \frac{g_m^{M1,2}}{2/3C_{cs}WL} = \frac{3}{2} \frac{\mu (V_{gs} - V_{th})_{M1,2}}{L^2}$$

• Distributed nature of gate capacitance & channel resistance results in an effective pole at 2.5 times input device cut-off frequency

EECS 247

Simple Gm-Cell Quality Factor

$$a = \frac{2L}{\theta \left(V_{gs} - V_{th}\right)_{M1,2}} \qquad \qquad P_2^{effective} \ = \frac{15}{4} \frac{\mu \left(V_{gs} - V_{th}\right)_{M1,2}}{L^2}$$

$$Q_{real}^{intg.} \approx \frac{1}{\frac{1}{a} - \omega_0 \sum_{i=2}^{\infty} \frac{1}{p_i}}$$

$$\frac{1}{Q^{intg.}} \approx \frac{\theta (V_{gs} - V_{th})_{M1,2}}{2L} - \frac{4}{15} \frac{\omega_o L^2}{\mu (V_{gs} - V_{th})_{M1,2}}$$

- · Note that phase lead associated with DC gain is inversely prop. to L
- Phase lag due to high-freq. poles directly prop. to L

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 33

Simple Gm-Cell Channel Length for Optimum Integrator Quality Factor

 Optimum channel length computed based on process parameters (could vary from process to process)

EECS 247

Lecture 8: Filters

Source-Coupled Pair CMOS Gm-Cell Transconductance

For a source-coupled pair the differential output current (ΔI_d) as a function of the input voltage (Δv_i) :

$$\Delta I_d = I_{ss} \left[\frac{\Delta v_i}{\left(V_{gs} - V_{th} \right)_{M1,2}} \right] \left\{ I - \frac{1}{4} \left[\frac{\Delta v_i}{\left(V_{gs} - V_{th} \right)_{M1,2}} \right]^2 \right\}^{1/2}$$

$$Note: For small \left[\frac{\Delta v_i}{\left(V_{gs} - V_{th} \right)_{M1,2}} \right] \rightarrow \frac{\Delta I_d}{\Delta v_i} = g_m^{M1,M2}$$

Note: As Δv_i increases $\frac{\Delta I_d}{\Delta v_i}$ or the effective transconductance decreases

V₁₁+ MI M2 | + V₁₂

$$\Delta v_i = V_{i1} - V_{i2}$$

$$\Delta I_d = I_{d1} - I_{d2}$$

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 35

Source-Coupled Pair CMOS Gm-Cell Linearity

Large signal G_m drops as input voltage increases
 → Gives rise to nonlinearity

EECS 247

Lecture 8: Filters

Measure of Linearity

$$HD3 = \frac{amplitude 3rd harmonic dist. comp.}{amplitude fundamental}$$
$$= \frac{1}{4} \frac{\alpha_3}{\alpha_1} Vin^2 + \dots$$

$$\begin{split} IM_3 = & \frac{amplitude\,3rd\,order\,IM\,\,comp.}{amplitude\,fundamental} \\ = & \frac{3}{4}\frac{\alpha_3}{\alpha_1}Vin^2 + \frac{25}{8}\frac{\alpha_5}{\alpha_1}Vin^4 + \ldots... \end{split}$$

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 37

Source-Coupled Pair Gm-Cell Linearity

$$\Delta I_d = I_{ss} \left[\frac{\Delta v_i}{\left(V_{gs} - V_{th} \right)_{MI,2}} \right] \left\{ I - \frac{I}{4} \left[\frac{\Delta v_i}{\left(V_{gs} - V_{th} \right)_{MI,2}} \right]^2 \right\}^{1/2} \tag{1}$$

$$\Delta I_d = a_1 \times \Delta v_i + a_2 \times \Delta v_i^2 + a_3 \times \Delta v_i^3 + \dots$$

Series expansion used in (1)

$$a_{I} = \frac{I_{ss}}{\left(V_{gs} - V_{th}\right)_{MI,2}}$$

&
$$a_2 = 0$$

&
$$a_4 = 0$$

$$a_5 = -\frac{I_{ss}}{128(V_{gs} - V_{th})_{ML2}^5}$$
 & $a_6 = 0$

EECS 247

Lecture 8: Filters

Linearity of the Source-Coupled Pair CMOS Gm-Cell

$$IM3 \approx \frac{3a_{3}}{4a_{1}}\hat{v}_{i}^{2} + \frac{25a_{5}}{8a_{1}}\hat{v}_{i}^{4} \dots$$

$$Substituting for a_{1},a_{3},\dots$$

$$IM3 \approx \frac{3}{32} \left(\frac{\hat{v}_{i}}{(V_{GS} - V_{th})}\right)^{2} + \frac{25}{1024} \left(\frac{\hat{v}_{i}}{(V_{GS} - V_{th})}\right)^{4} \dots$$

$$\hat{v}_{i max} \approx 4(V_{GS} - V_{th}) \times \sqrt{\frac{2}{3} \times IM3}$$

$$IM_3 = 1\% \& (V_{GS} - V_{th}) = IV \implies \hat{V}_{in}^{rms} \approx 230 mV$$

· Note that max. signal handling capability function of gate-overdrive voltage

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 39

Dynamic Range for Source-Coupled Pair Based Filter

$$IM_3 = 1\% \& (V_{GS} - V_{th}) = 1V \implies V_{th}^{rms} \approx 230mV$$

- · Minimum detectable signal determined by total noise voltage
- It can be shown for the 6th order Butterworth bandpass filter fundamental noise contribution is given by:

$$\sqrt{\overline{v_o^2}} \approx \sqrt{\frac{3}{Q} \frac{k T}{C_{intg}}}$$

Assuming
$$Q=10$$
 $C_{intg}=5pF$
 $v_{noise}^{rms} \approx 160 \mu V$
 $since$ $v_{max}^{rms}=230 mV$

Dynamic Range =
$$20log \frac{230x10^{-3}}{160x10^{-6}} \approx 63dB$$

Simplest Form of CMOS Gm Cell Disadvantages

•Max. signal handling capability function of gate-overdrive

$$IM_3 \propto (V_{GS} - V_{th})^{-2}$$

•Critical freq. is also a function of gate-overdrive

$$\begin{split} & \omega_o = \frac{g_m^{M\,1,2}}{2 \times C_{int\,g}} \\ & \text{since} \quad g_m = \mu C_{ox} \frac{W}{L} \Big(V_{gs} - V_{th} \Big) \\ & \text{then} \quad \omega_o \propto \quad \Big(V_{gs} - V_{th} \Big) \end{split}$$

→ Filter tuning affects max. signal handling capability!

EECS 247

Lecture 8: Filters

© 2009 H.K. Page 41

Simplest Form of CMOS Gm Cell Removing Dependence of Maximum Signal Handling Capability on Tuning

- Can overcome problem of max. signal handling capability being a function of tuning by providing tuning through:
 - Coarse tuning via switching in/out binaryweighted cross-coupled pairs → Try to keep gate overdrive voltage constant
 - Fine tuning through varying current sources

→ Dynamic range dependence on tuning removed (to 1st order)

Ref: R.Castello ,I.Bietti, F. Svelto , "High-Frequency Analog Filters in Deep Submicron Technology , "International Solid State Circuits Conference, pp 74-75, 1999.

Simplest Form of CMOS Gm-Cell

- Pros
 - Capable of very high frequency performance (highest?)
 - Simple design
- Cons
 - Tuning affects max. signal handling capability (can overcome)
 - Limited linearity (possible to improve)
 - Tuning affects power dissipation

Ref: H. Khorramabadi and P.R. Gray, "High Frequency CMOS continuous-time filters," IEEE Journal of Solid-State Circuits, Vol.-SC-19, No. 6, pp.939-948, Dec. 1984.

EECS 247 Lecture 8:

© 2010 H.K. Page 43

Gm-Cell Source-Coupled Pair with Degeneration

$$I_d = \frac{\mu C_{ox}}{2} \frac{W}{L} \left[2 \left(V_{gs} - V_{th} \right) V_{ds} - V_{ds}^2 \right]$$

$$g_{ds} = \frac{\partial I_d}{\partial V_{ds}} \approx \mu C_{ox} \frac{W}{L} \Big(V_{gs} - V_{th} \Big) \ \bigg|_{V_{ds} \ small}$$

$$g_{eff} = \frac{I}{\frac{1}{g_{ds}^{M3}} + \frac{2}{g_{m}^{M1,2}}}$$
 for $g_{m}^{M1,2} >> g_{ds}^{M3}$

for
$$g_m^{M1,2} >> g_{ds}^{M3}$$

$$g_{eff}\approx g_{ds}^{M3}$$

M3 operating in triode mode → source degeneration→ determines overall gm Provides tuning through varying Vc (DC voltage source)

Gm-Cell Source-Coupled Pair with Degeneration

- Pros
 - Moderate linearity
 - Continuous tuning provided by varying Vc
 - Tuning does not affect power dissipation
- Cons
 - Extra poles associated with the source of M1,2,3→ Low frequency
 - applications only

Ref: Y. Tsividis, Z. Czarnul and S.C. Fang, "MOS transconductors and integrators with high linearity," Electronics Letters, vol. 22, pp. 245-246, Feb. 27, 1986

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 45

BiCMOS Gm-Cell Example

• MOSFET operating in triode mode (M1):

$$\begin{split} I_{d} &= \frac{\mu C_{ox}}{2} \frac{W}{L} \left[2 \left(V_{gs} - V_{th} \right) V_{ds} - V_{ds}^{2} \right] \\ g_{m}^{MI} &= \frac{\partial I_{d}}{\partial V_{gs}} = \mu C_{ox} \frac{W}{L} V_{ds} \end{split}$$

- Note that if V_{ds} is kept constant $\rightarrow g_m$ stays constant
- Linearity performance \rightarrow keep gm constant as Vin varies \rightarrow function of how constant V_{ds}^{MI} can be held
 - Need to minimize gain @ node X

$$A_{\chi} = \frac{V_{\chi}}{V_{in}} = g_m^{Ml} / g_m^{Bl}$$

- Since for a given current, g_m of BJT is larger compared to MOS- preferable to use BJT
- Extra pole at node X could limit max. freq.

Varying V_b changes $V_{ds}^{\ Ml}$

- \rightarrow Changes g_m^{MI}
- \rightarrow adjustable overall stage g_m

Alternative Fully CMOS Gm-Cell Example

- BJT replaced by a MOS transistor with boosted g_m
- Lower frequency of operation compared to the BiCMOS version due to more parasitic capacitance at nodes A & B

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 47

BiCMOS Gm-C Integrator

- Differential- needs common-mode feedback circuit
- · Frequency tuned by varying Vb
- Design tradeoffs:
 - Extra poles at the input device drain junctions
 - Input devices have to be small to minimize parasitic poles
 - Results in high input-referred offset voltage → could drive circuit into non-linear region
 - Small devices → high 1/f noise

EECS 247 Lecture 8:

Filters

7th Order Elliptic Gm-C LPF For CDMA RX Baseband Application

- Gm-Cell in previous page used to build a 7th order elliptic filter for CDMA baseband applications (650kHz corner frequency)
- In-band dynamic range of <50dB achieved

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 49

Comparison of 7th Order Gm-C versus Opamp-RC LPF

- Gm-C filter requires 4 times less intg. cap. area compared to Opamp-RC
 - →For low-noise applications where filter area is dominated by Cs, could make a significant difference in the total area
- Opamp-RC linearity superior compared to Gm-C
- Power dissipation tends to be lower for Gm-C since OTA load is C and thus no need for buffering

EECS 247 Lecture 8:

Filters

BiCMOS Gm-OTA-C Integrator

- Used to build filter for disk-drive applications
- Since high frequency of operation, timeconstant sensitivity to parasitic caps significant.
 - → Opamp used
- M2 & M3 added → provides phase lead to compensate for phase lag due to amp extra poles

Ref: C. Laber and P.Gray, "A 20MHz 6th Order BiCMOS Parasitic Insensitive Continuous-time Filter & Second Order Equalizer Optimized for Disk Drive Read Channels," *IEEE Journal of Solid State Circuits*, Vol. 28, pp. 462-470, April 1993.

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 51

6th Order BiCMOS Continuous-time Filter & Second Order Equalizer for Disk Drive Read Channels

- \bullet Gm-C-opamp of the previous page used to build a 6^{th} order filter for Disk Drive
- · Filter consists of cascade of 3 biquads with max. Q of 2 each
- Tuning \rightarrow DC tuning of gm-cells (Lect. 7 page 32) + trimming of Cs
- Performance in the order of 40dB SNDR achieved for up to 20MHz corner frequency

Ref: C. Laber and P.Gray, "A 20MHz 6th Order BiCMOS Parasitic Insensitive Continuous-time Filter & Second Order Equalizer Optimized for Disk Drive Read Channels," *IEEE Journal of Solid State Circuits*, Vol. 28, pp. 462-470, April 1993.

EECS 247 Lecture 8:

Filters

Gm-Cell Source-Coupled Pair with Degeneration

- · Gm-cell intended for low Q disk drive filter
- M7.8 operating in triode mode provide source degeneration for M1.2
 - \rightarrow determine the overall g_m of the cell

Ref: I.Mehr and D.R.Welland, "A CMOS Continuous-Time Gm-C Filter for PRML Read Channel Applications at 150 Mb/s and Beyond", IEEE Journal of Solid-State Circuits, April 1997, Vol.32, No.4, pp. 499-513.

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 53

Gm-Cell Source-Coupled Pair with Degeneration

- Feedback provided by M5,6 maintains the gate-source voltage of M1,2 constant by forcing their current to be constant→ helps deliver Vin across M7,8 with good linearity
- Current mirrored to the output via M9,10 with a factor of k → overall gm scaled by k
- Performance level of about 50dB SNDR at f_{corner} of 25MHz achieved

BiCMOS Gm-C Integrator

- Needs higher supply voltage compared to the previous design since quite a few devices are stacked vertically
- M1,2 \rightarrow triode mode
- Q1,2 \rightarrow hold V_{ds} of M1,2 constant
- Current ID used to tune filter critical frequency by varying V_{ds} of M1,2 and thus controlling gm of M1,2
- M3, M4 operate in triode mode and added to provide common-mode feedback

Ref: R. Alini, A. Baschirotto, and R. Castello, "Tunable BiCMOS Continuous-Time Filter for High-Frequency Applications," *IEEE Journal of Solid State Circuits*, Vol. 27, No. 12, pp. 1905-1915, Dec. 1992.

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 55

BiCMOS Gm-C Integrator

• M5 & M6 configured as capacitors- added to compensate for RHP zero due to Cgd of M1,2 (moves it to LHP) size of M5,6 → 1/3 of M1,2

Ref: R. Alini, A. Baschirotto, and R. Castello, "Tunable BiCMOS Continuous-Time Filter for High-Frequency Applications," *IEEE Journal of Solid State Circuits*, Vol. 27, No. 12, pp. 1905-1915, Dec. 1992.

EECS 247 Lecture 8:

Filters

BiCMOS Gm-C Filter For Disk-Drive Application

- · Using the integrators shown in the previous page
- · Biquad filter for disk drives
- gm1=gm2=gm4=2gm3
- Q=2
- Tunable from 8MHz to 32MHz

Ref: R. Alini, A. Baschirotto, and R. Castello, "Tunable BiCMOS Continuous-Time Filter for High-Frequency Applications," *IEEE Journal of Solid State Circuits*, Vol. 27, No. 12, pp. 1905-1915, Dec. 1992.

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 57

Summary Continuous-Time Filters

- · Opamp RC filters
 - Good linearity \rightarrow High dynamic range (60-90dB)
 - Only discrete tuning possible
 - Medium usable signal bandwidth (<10MHz)
- Opamp MOSFET-C
 - Linearity compromised (typical dynamic range 40-60dB)
 - Continuous tuning possible
 - Low usable signal bandwidth (<5MHz)
- Opamp MOSFET-RC
 - Improved linearity compared to Opamp MOSFET-C (D.R. 50-90dB)
 - Continuous tuning possible
 - Low usable signal bandwidth (<5MHz)
- Gm-C
 - Highest frequency performance -at least an order of magnitude higher compared to other integrator-based active filters (<100MHz)
 - Typically, dynamic range not as high as Opamp RC but better than Opamp MOSFET-C (40-70dB)

Switched-Capacitor Filters

- S.C. filters are sampled-data type circuits operating with continuous signal amplitude & quantized time
- First product including switched-capacitor filters
 - Intel 2912 voice-band CODEC
- Stand-alone filter IC: LMF100 from National Semi.
 - Dual S.C. biquad with LP, HP, BP outputs
- Other than filters, S.C. circuits are used in oversampled data converters
- Pioneering work on S.C. filter technology was mostly performed at UC Berkeley

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 59

Switched-Capacitor Filters

- Emulating resistor via switched-capacitor network
- Switched-capacitor 1st order filter
- Switch-capacitor filter considerations:
 - Issue of aliasing and how to prevent aliasing
 - Tradeoffs in choice of sampling rate
 - Effect of sample and hold
 - Switched-capacitor filter electronic noise

Switched-Capacitor Resistors

- Why does this behave as a resistor?
- Charge transferred from v_{IN} to v_{OUT} during each clock cycle is:

$$Q = C(v_{IN} - v_{OUT})$$

$$i=Q/t=Q.f_s$$

Substituting for *Q*:

$$i = f_S C(v_{IN} - v_{OUT})$$

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 63

Switched-Capacitor Resistors

$$i = f_S C(v_{IN} - v_{OUT})$$

With the current through the switchedcapacitor resistor proportional to the voltage across it, the equivalent "switched capacitor resistance" is:

$$R_{eq} = \frac{V_{IN} - V_{OUT}}{i} = \frac{1}{f_s C}$$

$$\begin{array}{l} \textit{Example:} \\ \textit{f_S} = 100 \textit{KHz}, C = 0.1 pF \\ \rightarrow \textit{R_{eq}} = 100 \textit{Mega} \Omega \end{array}$$

Note: Can build large time-constant in small area

Switched-Capacitor Filter

- Let's build a "switched- capacitor" filter ...
- · Start with a simple RC LPF
- Replace the physical resistor by an equivalent switched-capacitor resistor
- 3-dB bandwidth:

$$\omega_{-3dB} = \frac{1}{R_{eq}C_2} = f_s \times \frac{C_1}{C_2}$$

$$f_{-3dB} = \frac{1}{2\pi} f_s \times \frac{C_1}{C_2}$$

EECS 247 Lecture 8:

Filters

© 2010 H.K. Page 65

Switched-Capacitor Filter Advantage versus Continuous-Time

 Corner freq. proportional to: Absolute value of Rs & Cs Poor accuracy → 20 to 50%

Fraction Main advantage of SC filters → inherent critical frequency accuracy