EE247 Lecture 9

- Switched-capacitor filters
 - -Introduction to S.C. filters
 - Issue of aliasing mandating use of anti-aliasing prefilters
 - Example of anti-aliasing prefilter for S.C. filters
 - -Switched-capacitor network electronic noise
 - -Switched-capacitor integrators
 - DDI integrators
 - LDI integrators

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 1

EE247 Summary of Last Lecture

- Continuous-time filter design considerations
 - Monolithic highpass filters
 - Active bandpass filter design
 - Lowpass to bandpass transformation
 - Example: 6th order bandpass filter
 - Gm-C bandpass filter using simple diff. pair
 - Various Gm-C filter implementations
- Performance comparison of various continuous-time filter topologies
- Introduction to switched-capacitor filters

EECS Lecture 9:

Switched-Capacitor Filters

Switched-Capacitor Resistors

$$i = f_S C(v_{IN} - v_{OUT})$$

With the current through the switchedcapacitor resistor proportional to the voltage across it, the equivalent "switched capacitor resistance" is:

$$R_{eq} = \frac{V_{IN} - V_{OUT}}{i} = \frac{1}{f_s C}$$

 $\begin{array}{l} \textit{Example:} \\ \textit{f_S} = 100 \textit{KHz}, C = 0.1 pF \\ \rightarrow \textit{R}_{eq} = 100 \textit{Mega} \Omega \end{array}$

Note: Can build large time-constant in small area

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 3

Switched-Capacitor Filter

- Let's build a "switched- capacitor" filter ...
- · Start with a simple RC LPF
- Replace the physical resistor by an equivalent switched-capacitor resistor
- · 3-dB bandwidth:

$$\omega_{-3dB} = \frac{1}{R_{eq}C_2} = f_s \times \frac{C_1}{C_2}$$

$$f_{-3dB} = \frac{1}{2\pi} f_s \times \frac{C_1}{C_2}$$

EECS Lecture 9:

Switched-Capacitor Filters

Switched-Capacitor Filter Advantage versus Continuous-Time Filter

 Corner freq. proportional to: System clock (accurate to few ppm) C ratio accurate → < 0.1%

 Corner freq. proportional to: Absolute value of Rs & Cs Poor accuracy → 20 to 50%

Main advantage of SC filters → inherent critical frequency accuracy

EECS Lecture 9:

Switched-Capacitor Filters

Uniform Sampling

Nomenclature:

Continuous time signal $x_c(t)$ Sampling interval TSampling frequency $f_s = 1/T$ Sampled signal $x_d(kT) = x(k)$

- Samples are the waveform values at kT instances and $\underline{\text{undefined}}$ in between
- Problem: Multiple continuous time signals can yield exactly the same discrete time signal
- Let's examine samples taken at 1μs intervals of several sinusoidal waveforms ...

time

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 7

Sampling Sine Waves

 $\begin{array}{l} v(t) = cos\left(2\pi.f_{in}.t\right) \\ Sampled-data\ domian \rightarrow t \rightarrow n.T\ or\ t \rightarrow n/f_{s} \\ v(n) = cos\left(2\pi.\frac{f_{in}}{f_{s}}.n\right) = cos\left(2\pi.\frac{101kHz}{1MHz}.n\right) \end{array}$

EECS Lecture 9:

Switched-Capacitor Filters

Sampling Sine Waves

Problem:

Sampled data domain → identical samples for:

$$v(t) = \cos \left[2\pi f_{in}t\right]$$

$$v(t) = \cos \left[2\pi (f_{in} + n.f_s)t\right]$$

$$v(t) = \cos \left[2\pi (f_{in}-n.f_s)t\right]$$

- * (n-integer)
- → Multiple continuous time signals can yield exactly the same discrete time signal

EECS Lecture 9:

Switched-Capacitor Filters

Aliasing

- Multiple continuous time signals can produce identical series of samples
- The folding back of signals from $nf_s\pm f_{sig}$ (n integer) down to the band f_{fin} is called <u>aliasing</u>
 - Sampling theorem: $f_s > 2f_{max_Signal}$
- If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal

EECS Lecture 9:

Switched-Capacitor Filters

How to Avoid Aliasing?

· Must obey sampling theorem:

$$f_{max\text{-}signal} < f_s/2$$

*Note:

Minimum sampling rate of $f_s = 2x f_{max-Signal}$ is called Nyquist rate

- · Two possibilities:
 - 1. Sample fast enough to cover all spectral components, including "parasitic" ones outside band of interest
 - 2. Limit f_{max_Signal} through filtering \rightarrow attenuate out-of-band components prior to sampling

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 15

How to Avoid Aliasing? 1-Sample Fast

Push sampling frequency to x2 of the highest frequency signal to cover all unwanted signals as well as wanted signals

→ In vast majority of cases not practical

EECS Lecture 9:

Switched-Capacitor Filters

How to Avoid Aliasing? 2-Filter Out-of-Band Signal Prior to Sampling

Pre-filter signal to eliminate/attenuate signals above $f_s/2$ - then sample

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 17

Anti-Aliasing Filter Considerations

Case1- $B = f_{sig}^{max} = f_s/2$

- Practical anti-aliasing filter →Non-zero filter "transition band"
- Note out-of-band signal close to $f_{\rm s}/2$ aliases down to the band of interest without much attenuation

EECS Lecture 9:

Switched-Capacitor Filters

Anti-Aliasing Filter Considerations

Case1- $B=f_{sig}^{max}=f_s/2$

- To achieve adequate out-of-band attentuation →extremely high order anti-aliasing filter (close to an ideal brickwall filter) is required
- · Not practical anti-aliasing filter
- In order to make this work, we need to sample much faster than 2x the signal bandwidth
 - →"Oversampling"

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 19

Practical Anti-Aliasing Filter

Case2 - $B=f_{max-Signal} << f_s/2$

- More practical anti-aliasing filter
- Preferable to have an anti-aliasing filter with:
 - →The lowest order possible
 - →No frequency tuning required (if frequency tuning is required then why use switchedcapacitor filter, just use the prefilter!?)

EECS Lecture 9:

Switched-Capacitor Filters

Tradeoff Oversampling Ratio versus Anti-Aliasing Filter Order

*Assumption → anti-aliasing filter is Butterworth type (not a necessary requirement)
Example:

Assume that a S.C. filter has 40dB in-band dynamic range and that out-of-band signals can have magnitude equal to in-band signals at the input → Find the minimum required anti-aliasing filter order versus oversampling rate

Ref: R. v. d. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed., Kluwer publishing, 2003, p.41

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 21

Tradeoff Oversampling Ratio versus Anti-Aliasing Filter Order

* Assumption → anti-aliasing filter is Butterworth type (not a necessary requirement)

→Tradeoff: Sampling frequency versus anti-aliasing filter order

Ref: R. v. d. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed., Kluwer publishing, 2003, p.41

EECS Lecture 9:

Switched-Capacitor Filters

Effect of Sample & Hold

• Using the Fourier transform of a rectangular impulse:

$$|H(f)| = \frac{T_p}{T_s} \frac{\sin(\pi f T_p)}{\pi f T_p} \longrightarrow \frac{\sin x}{x}$$
 shape

In literature also called Sinc function

EECS Lecture 9:

Switched-Capacitor Filters

Periodic AC Analysis

SPICE frequency analysis

```
-ac linear, time-invariant circuits-pac linear, time-variant circuits
```

SpectreRF statements

```
V1 ( Vi 0 ) vsource type=dc dc=0 mag=1
  pacmag=1
PSS1 pss period=lu errpreset=conservative
PAC1 pac start=1 stop=1M lin=1001
```

- Output
 - -Divide results by sinc(f/f_s) to correct for ZOH distortion

EECS Lecture 9:

Switched-Capacitor Filters

© 2010 H.K. Page 35

SpectreRF Circuit File

```
rc pac
simulator lang=spectre
ahdl_include "zoh.def"
S1 ( Vi c1 phi1 0 ) relay ropen=100G rclosed=1 vt1=-500m vt2=500m
S2 ( c1 Vo_sc phi2 0 ) relay ropen=100G rclosed=1 vt1=-500m vt2=500m ^{\circ}
C1 ( c1 0 ) capacitor c=314.159f
C2 ( Vo_sc 0 ) capacitor c=1p
R1 ( Vi Vo_rc ) resistor r=3.1831M
C2rc ( Vo rc 0 ) capacitor c=1p
CLK1 Vphi1 ( phi1 0 ) vsource type=pulse val0=-1 val1=1 period=1u
                          width=450n delay=50n rise=10n fall=10n
CLK1_Vphi2 ( phi2 0 ) vsource type=pulse val0=-1 val1=1 period=1u
                          width=450n delay=550n rise=10n fall=10n
V1 ( Vi 0 ) vsource type=dc dc=0 mag=1 pacmag=1
PSS1 pss period=1u errpreset=conservative
PAC1 pac start=1 stop=3.1M log=1001
{\tt ZOH1} ( {\tt Vo\_sc\_zoh} 0 {\tt Vo\_sc} 0 ) zoh period=1u delay=500n aperture=1n tc=10p
ZOH2 ( Vi_zoh 0 Vi 0 ) zoh period=1u delay=0 aperture=1n tc=10p
```

EECS Lecture 9:

Switched-Capacitor Filters

ZOH Circuit File

```
// Implement switch with effective series
// Copy from the SpectreRF Primer
                                                                    // resistence of 1 Ohm
                                                                     if ( ($time() > start) && ($time() <=
module zoh (Pout, Nout, Pin, Nin) (period,
    delay, aperture, tc)
                                                                      I(hold) <- V(hold) - V(Pin, Nin);</pre>
                                                                    else
node [V,I] Pin, Nin, Pout, Nout;
                                                                       I(hold) <- 1.0e-12 * (V(hold) - V(Pin,
parameter real period=1 from (0:inf);
parameter real delay=0 from [0:inf);
                                                                     Nin));
parameter real aperture=1/100 from (0:inf);
parameter real tc=1/500 from (0:inf);
                                                                    // Implement capacitor with an effective
                                                                     // capacitance of to
integer n; real start, stop;
node [V,I] hold;
                                                                    I(hold) <- tc * dot(V(hold));</pre>
  analog {

// determine the point when aperture begins
                                                                     // Buffer output
                                                                    V(Pout, Nout) \leftarrow V(hold);
    n = ($time() - delay + aperture) / period + 0.5;
                                                                    // Control time step tightly during
     start = n*period + delay - aperture;
                                                                    // aperture and loosely otherwise
    $break_point(start);
                                                                    if (($time() >= start) && ($time() <=
                                                                     stop))
    // determine the time when aperture ends 
 n = (\$time() - delay) / period + 0.5;
 stop = n*period + delay;
                                                                      $bound_step(tc);
                                                                    else
                                                                       $bound_step(period/5);
     $break_point(stop);
```

EECS Lecture 9:

Switched-Capacitor Filters

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 39

Sampled-Data Systems (Filters) Anti-aliasing Requirements

- Frequency response repeats at f_s , $2f_s$, $3f_s$
- High frequency signals close to f_s , $2f_s$,....folds back into passband (aliasing)
- Most cases must pre-filter input to sampled-data systems (filter) to attenuate signal at:

$$f > f_s/2$$
 (nyquist $\rightarrow f_{max} < f_s/2$)

 Usually, anti-aliasing filter → included on-chip as continuous-time filter with relaxed specs. (no tuning)

EECS 247 Lecture 9

Switched-Capacitor Filters

Example: Anti-Aliasing Filter Requirements

- Voice-band CODEC S.C. filter high order low-pass with $f_{-3dB} = 4kHz$ & $f_s = 256kHz$
- Anti-aliasing continuous-time pre-filter requirements:
 - Need at least 40dB attenuation of all out-of-band signals which can alias inband
 - Incur no phase-error from 0 to 4kHz
 - -Gain error due to anti-aliasing filter \rightarrow 0 to 4kHz < 0.06dB
 - Allow +-30% variation for anti-aliasing filter corner frequency (no tuning)
 Need to find minimum required filter order

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 41

Oversampling Ratio versus Anti-Aliasing Filter Order

* Assumption → anti-aliasing filter is Butterworth type

→2nd order Butterworth

→Need to find minimum corner frequency for mag. droop < 0.06dB

EECS 247 Lecture 9

Switched-Capacitor Filters

Example: Meeting the Anti-Aliasing Filter Specifications

- Note that since the anti-aliasing filter is not tuned have to make sure all specifications are met under worst-case conditions
- Worst case passband droop occurs at narrowest possible anti-aliasing filter bandwidth
- Find the AA filter bandwidth for with droop <0.06dB
- Normalized frequency for 0.06dB droop: need perform passband simulation→ normalized ω=0.34
- Narrowest AA filter bandwidth → 4kHz/0.34=12kHz

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 43

Example: Anti-Aliasing Filter Specifications

- Since +-30% variation of AA filter corner frequency is expected
- Set anti-aliasing filter corner frequency for minimum corner frequency 12kHz → Find nominal corner frequency: 12kHz/0.7=17.1kHz
- Check if min. attenuation requirement is satisfied for widest filter bandwidth → 17.1x1.3=22.28kHz
- Find $(f_s f_{sig})/f_{-3dB}$ max $\rightarrow 252/22.2 = 11.35 \rightarrow$ make sure enough attenuation
- Check phase-error within 4kHz signal band for min. filter bandwidth via simulation

EECS 247 Lecture 9

Switched-Capacitor Filters

Example: Anti-Aliasing Filter

- Voice-band S.C. filter $f_{-3dB} = 4kHz$ & $f_s = 256kHz$
- Anti-aliasing filter requirements:
 - Need 40dB attenuation at clock freq.
 - Incur no phase-error from 0 to 4kHz
 - Gain error 0 to 4kHz < 0.06dB
 - Allow +-30% variation for anti-aliasing corner frequency (no tuning)
 - →2-pole Butterworth LPF with nominal corner freq. of 17kHz & no tuning (min.=12kHz & max.=22kHz corner frequency)

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 45

Summary

- Sampling theorem $\rightarrow f_s > 2f_{max\ Signal}$
- Signals at frequencies $nf_S \pm f_{sig}$ fold back down to desired signal band, f_{sig}
 - → This is called <u>aliasing</u> & usually mandates use of anti-aliasing pre-filters combined with oversampling
- · Oversampling helps reduce required order for anti-aliasing filter
- S/H function shapes the frequency response with sinx/x shape
 - → Need to pay attention to droop in passband due to sinx/x
- If the above requirements are not met, CT signals can NOT be recovered from sampled-data networks without loss of information

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Network Noise

- During \$\phi_1\$ high: Resistance of switch \$1 (R_{on}^{S1}) produces a noise voltage on C with variance kT/C (lecture 1- first order filter noise)
- The corresponding noise charge is:

$$Q^2 = C^2V^2 = C^2$$
. $kT/C = kTC$

 \$\phi_1\$ low: S1 open →This charge is sampled

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 47

Switched-Capacitor Noise

- During ϕ_2 high: Resistance of switch S2 contributes to an uncorrelated noise charge on C at the end of ϕ_2 : with variance kT/C
- Mean-squared noise charge transferred from v_{IN} to v_{OUT} per sample period is:

$$Q^2=2kTC$$

 $v_{IN} \xrightarrow{\phi_1} \phi_2$ $S1 \qquad S2$ C

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Noise

• The mean-squared noise current due to S1 and S2's *kT/C* noise is :

Since
$$i = \frac{Q}{t}$$
 then $\rightarrow i^{2} = (Qf_{s})^{2} = 2k_{B}TCf_{s}^{2}$

• This noise is approximately white and distributed between 0 and $f_s/2$ (noise spectra \rightarrow single sided by convention) The spectral density of the noise is found:

$$\frac{\overline{i^2}}{\Delta f} = \frac{2k_B T C f_S^2}{f_S / 2} = 4k_B T C f_S$$

Since $R_{EQ} = \frac{1}{f_s C}$ then:

$$\frac{\overline{i^2}}{\Delta f} = \frac{4k_B T}{R_{EO}}$$

→S.C. resistor noise = a physical resistor noise with same value!

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 49

Periodic Noise Analysis SpectreRF

Sampling Noise from SC S/H

PSS pss period=100n maxacfreq=1.5G errpreset=conservative PNOISE (Vrc_hold 0) pnoise start=0 stop=20M lin=500 maxsideband=10

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Integrator

for fsignal << fsampling

Main advantage: No tuning needed

→ Critical frequency function of ratio of capacitors & clock freq.

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 53

Switched-Capacitor Integrator

EECS 247 Lecture 9

Switched-Capacitor Filters

Continuous-Time versus Discrete-Time Analysis Approach

Continuous-Time

· Write differential equation

- Laplace transform (*F*(*s*))
- Let $s=j\omega \rightarrow F(j\omega)$
- Plot |F(jω)|, phase(F(jω))

Discrete-Time

 Write difference equation → relates output sequence to input sequence

$$V_O(nT_S) = V_i [(n-I)T_S] - \dots$$

• Use delay operator $z^{^{\bullet}I}$ to transform the recursive realization to algebraic equation in z domain

$$V_o(z) = z^{-1}V_i(z)....$$

- Set $z = e^{j\omega T}$
- · Plot mag./phase versus frequency

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 55

Discrete Time Design Flow

- Transforming the recursive realization to algebraic equation in *z* domain:
 - Use delay operator z :

$$nT_{S}...... \rightarrow 1$$

$$[(n-1)T_{S}]..... \rightarrow z^{-1}$$

$$[(n-1/2)T_{S}]..... \rightarrow z^{-1/2}$$

$$[(n+1)T_{S}]..... \rightarrow z^{+1}$$

$$[(n+1/2)T_{S}]..... \rightarrow z^{+1/2}$$

* Note: $z = e^{j\omega T_s} = cos(\omega T_s) + j sin(\omega T_s)$

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Integrator Output Sampled on ϕ_1

$$\begin{split} &C_I \ V_O(nT_S) = \ C_I \ V_O\big[(n-1)T_S\big] - C_S \ V_{in}\big[(n-1)T_S\big] \\ &V_O(nT_S) = &V_O\big[(n-1)T_S\big] - \frac{C_S}{C_I} V_{in}\big[(n-1)T_S\big] \\ &V_O(Z) = &Z^{-1}V_O(Z) - Z^{-1}\frac{C_S}{C_I} V_{in}(Z) \end{split}$$

$$\frac{V_O}{V_O}(Z) = -\frac{C_S}{C_I} \times \frac{Z^{-1}}{1 - Z^{-1}}$$

DDI (Direct-Transform Discrete Integrator)

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 59

z-Domain Frequency Response

- Sampled-data systems → z plane singularities analyzed via z-plane
- •The s-plane $j\omega$ axis maps onto the unit-circle
- LHP singularities in s-plane map into inside of unit-circle in z-domain
- RHP singularities in s-plane map into outside of unitcircle in z-domain
- Particular values:

$$-f = 0 \Rightarrow z = 1$$
$$-f = f/2 \Rightarrow z = -1$$

EECS 247 Lecture 9

Switched-Capacitor Filters

z-Domain Frequency Response

• The frequency response is obtained by evaluating H(z) on the unit circle at:

$$z = e^{j\omega T} = \cos(\omega T_s) + j \sin(\omega T_s)$$

- Once z=-1 ($f_s/2$) is reached, the frequency response repeats, as expected
- The angle to the pole is equal to 360° (or 2π radians) times the ratio of the pole frequency to the sampling frequency

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 61

Switched-Capacitor Direct-Transform Discrete Integrator

$$\frac{V_O}{V_{in}}(z) = -\frac{C_S}{C_I} \times \frac{z^{-1}}{1 - z^{-1}}$$
$$= -\frac{C_S}{C_I} \times \frac{1}{z^{-1}}$$

EECS 247 Lecture 9

Switched-Capacitor Filters

DDI Switched-Capacitor Integrator

$$\frac{V_O}{V_{in}}(z) = -\frac{C_s}{C_I} \frac{1}{j\omega T} \times \frac{\omega T/2}{\sin(\omega T/2)} \times e^{-j\omega T/2}$$
Mag. & phase error for:
 $\frac{1}{2} \Rightarrow Mag. \ error = 1\% \ or \ 0.1 dB$
Magnitude Error
Magnitude Error

Example: Mag. & phase error for:

 $1-f/f_s=1/12 \Rightarrow Mag. \ error=1\% \ or \ 0.1dB$ Phase error=15 degree $Q_{intg} = -3.8$

 $2-f/f_s=1/32 \rightarrow Mag.\ error=0.16\%\ or\ 0.014dB$ Phase error=5.6 degree

 $Q_{intg} = -10.2$

DDI Integrator:

→ magnitude error no problem phase error major problem

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Integrator Output Sampled on ϕ 2

Sample output $\frac{1}{2}$ clock cycle earlier \rightarrow Sample output on ϕ_2

EECS 247 Lecture 9

Switched-Capacitor Filters

Switched-Capacitor Integrator Output Sampled on ϕ 2

$$\Phi_1 \rightarrow Q_s[(n-1)T_s] = C_s V_i[(n-1)T_s], \quad Q_I[(n-1)T_s] = Q_I[(n-3/2)T_s]$$

$$\Phi_2 \rightarrow Q_s[(n-1/2) T_s] = 0 \quad ,$$

$$Q_{I}[(n-1/2) T_{s}] = Q_{I}[(n-3/2) T_{s}] + Q_{s}[(n-1) T_{s}]$$

$$\Phi_1 \rightarrow Q_s [nT_s] = C_s V_i [nT_s],$$

$$Q_{I}[nT_{s}] = Q_{I}[(n-1)T_{s}] + Q_{s}[(n-1)T_{s}]$$

$$\Phi_2 \rightarrow Q_s[(n+1/2) T_s] = 0$$
,

$$Q_I[(n+1/2) T_s] = Q_I[(n-1/2) T_s] + Q_s[n T_s]$$

EECS 247 Lecture 9

Switched-Capacitor Filters

© 2010 H. K. Page 69

Switched-Capacitor Integrator Output Sampled on ϕ 2

$$Q_{I}[(n+1/2) T_{s}] = Q_{I}[(n-1/2) T_{s}] + Q_{s}[n T_{s}]$$

$$V_{o2} = -Q_I/C_I \& V_i = Q_s/C_s \rightarrow C_I V_{o2}[(n+1/2) T_s] = C_I V_{o2}[(n-1/2) T_s] - C_s V_i [n T_s]$$

Using the z operator rules:

osing me z operator rutes.

$$\frac{V_{o2}}{V_{in}}(z) = -\frac{C_s}{C_I} \times \frac{z^{-1/2}}{I - z^{-1}}$$

 $\rightarrow C_I V_{o2} z^{1/2} = C_I V_{o2} z^{-1/2} - C_s V_i$

EECS 247 Lecture 9

Switched-Capacitor Filters

LDI Switched-Capacitor Integrator LDI (Lossless Discrete Integrator) \rightarrow same as DDI but output is sampled $\frac{1}{2}$ clock cycle earlier LDI $\frac{V_{o2}}{V_{in}}(z) = -\frac{C_s}{C_I} \times \frac{z^{-1/2}}{|-z^{-1}|}, \quad z = e^{j\omega T}$ $= -\frac{C_s}{C_I} \times \frac{e^{-j\omega T/2}}{|-e^{-j\omega T}|} = \frac{C_s}{C_I} \times \frac{1}{e^{-j\omega T/2} - e^{+j\omega T/2}}$ $= -j\frac{C_s}{C_I} \times \frac{1}{2\sin(\omega T/2)}$ $= -\frac{C_s}{C_I} \frac{1}{j\omega T} \times \frac{\omega T/2}{\sin(\omega T/2)}$ No Phase Error! For signals at frequencies << sampling freq. \rightarrow Magnitude error negligible Magnitude Error

Switched-Capacitor Filters

© 2010 H. K. Page 71

EECS 247 Lecture 9

