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More Effective Stress Diagnostic

• Single structure measures both 
compressive and tensile stress

• Expansion or contraction of test 
beam  deflection of pointer

• Vernier movement indicates 
type and magnitude of stress
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Q Measurement Using Resonators

[Y.-W. Lin, Nguyen, JSSC Dec. 04]
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process

• Solution: use a folded-beam comb-drive resonator
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Comb-Drive Resonator in Action

• Below: fully integrated micromechanical resonator oscillator 
using a MEMS-last integration approach
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process

• Solution: use a folded-beam comb-drive resonator
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Measurement of Young’s Modulus

• Use micromechanical resonators
Resonance frequency depends on E
For a folded-beam resonator: 21
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• Extract E from 
measured frequency fo

•Measure fo for several 
resonators with varying 
dimensions

• Use multiple data points 
to remove uncertainty 
in some parameters
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Anisotropic Materials
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Elastic Constants in Crystalline Materials

• Get different elastic constants in different crystallographic 
directions  81 of them in all
Cubic symmetries make 60 of these terms zero, leaving 

21 of them remaining that need be accounted for

• Thus, describe stress-strain relations using a 6x6 matrix
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Stiffness Coefficients of Silicon

• Due to symmetry, only a few of the 21 coefficients are 
non-zero

•With cubic symmetry, silicon has only 3 independent 
components, and its stiffness matrix can be written as:
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where
C11 = 165.7 GPa
C12 = 63.9 GPa
C44 = 79.6 GPa
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Young’s Modulus in the (001) Plane
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Poisson Ratio in (001) Plane
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Anisotropic Design Implications

• Young’s modulus and Poisson ratio 
variations in anisotropic materials 
can pose problems in the design 
of certain structures

• E.g., disk or ring resonators, 
which rely on isotropic properties 
in the radial directions
Okay to ignore variation in RF 

resonators, although some Q 
hit is probably being taken

• E.g., ring vibratory rate 
gyroscopes
Mode matching is required, 

where frequencies along 
different axes of a ring must 
be the same

Not okay to ignore anisotropic 
variations, here Ring Gyroscope
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