EE247B/ME218: Introduction to MEMS

Lecléml: Energy Methods

& More General Geometries

B e 9
* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?

* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Top view of cantilever's W(x)
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&  Solution: Use Principle of Virtual Work
UG B e 6
* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done

by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection
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& More Visual Description ...
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& Fundamentals: Energy Density

" UG Berkeley

* Strain energy density: [J/m3] W(0:); g_"m /molw_?g ;slﬁtcb*:m

% To find work done in straining material Shoved "
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* Total strain energy [J]: e~ effd of Werk

% Integrate over all strains (hormal and shear)

W= J._U(%E (8“,2 + e},z +e’ )+ % G(%,-z ty it },yzz )}ﬂ
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i Bending Energy Density

UCBetkele

y’ Neutral Axis

.k y(x) = transverse displacement
;fﬂd__ = x of neutral axis

— dx y

* First, find the bending energy dW,,,, in an infinitesimal

length dV——w widd,
Whend = de E e,c(g Ny
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i - Energy Due to Axial Load

ds

o

* Strain due to axial load S contributes an energy dW,. ..,
in length dx, since lengthening of the different element dx

(to ds) results in a strain ¢, /Bimwuf’ﬂxeorem
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Shear Modulus

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44
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&  Applying the Principle of Virtual Work
["UGBerkeley
* Basic Procedure:
% Guess the form of the beam deflection under the applied
loads — 9uer ly(’X,F)
% Vary the parameters in the beam deflection function in
order to minimize:

Assumes
Sum strain ener'g«es pom‘r load

U= Z‘W ZFu

Dlsplacemem'
at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces
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i Example: Tapered Cantilever Beam & Strain Energy And Work By F
" UGBerkeley " UGBerkeley
* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the U=W, —F y(L,)
free end of a cantilever with tapered width W(x) o e
Top view of cantilever's W(x) 1 L. d? 2
w ¢: T W(x) = W(l_i) m J= fEJ‘]»(x) Y dx (Bending Energy)
50% taper 21 T2 e
b taper . e 0
X=
¢ Adjustable 3
- | ) W(x)h \ d?
~ parameters: I (x)= Y _
- l,_)x minimize U -( ) 12 a’x2 = 202 + 6c3x
- Y .
- X (Using our guess)
g X F y(x)= c/xz Teax’ W(x) = W(I_E)
* Start by guessing the solution ———— )2 3 e Tip Deflection
% It should satisfy the boundary conditions P~ ! I —r
% The strain energy integrals shouldn't be too tedious - . = EWh3 J‘ (1- A )(202 +6c, x)2 dx - F(c, L(‘2 +e, Lf)
* This might not matter much these days, though, since 24 " 2L, ’ -
one could just use matlab or mathematica Lok
& Find ¢, and ¢; That Minimize U & Minimize U (cont)
1 UL B . UL B .
* Minimize U — basically, find the ¢, and c; that brings U * Evaluate the derivatives and set to zero:
closest to zero (which is what it would be if we had guessed
correctly) ou_ - (E Wh’ AE EWh’ 7
* The ¢, and c; that minimize U are the ones for which the F € et 4 G e
partial derivatives of U with respective to them are zero: 2
U 5 s [ EWn® 2
aU au ——=0=| ZEWh'c,-F |L + c
=0 L =0 de, (8 : ‘ 3
dc, de, )
* Proceed: Solve the simultaneous equations to get ¢, and c;:
% First, evaluate the integral to get an expression for U:
84\ FL 24\ F
3 50;2 3 G5 2 022 5 3 c,=| = < o= = .
U=EWh TLC +TLC +?L¢ _F(Cch +C3LC;) 13 |EWh" 13 )EWh
D
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w,—w The Virtual Work-Derived Solution A Compar'ison With Finite Element Simulation
UG B e UGBt
* And the solution: * Be Iow- ANSYS finite element model with
L =500 um W, = 20 um E = 170 GPa
(x) = LF; z X X’ h=2upm Wﬁps= 0 um

* Result: (from static
analysis)
%k = 0.471 uN/m
* This matches the
result from energy
minimization to 3
significant figures

* Solve for tip deflection and obtain the spring constant:

24F 13EWh’
L k.=F/y(L
V(L) = [BEWI)L ¥( )(6% )
* Compare with previous solution for constant-width cantilever

beam (using Euler theory):

(L) :( 4F jL’S 13% smaller than

EWh’ tapered-width case

A

5 Need a Better Approximation?
U ML\!—-

Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give

insight into parameter dependencies that FEA cannot

% Can compare the importance of different terms
% Should use in tandem with FEA for design
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