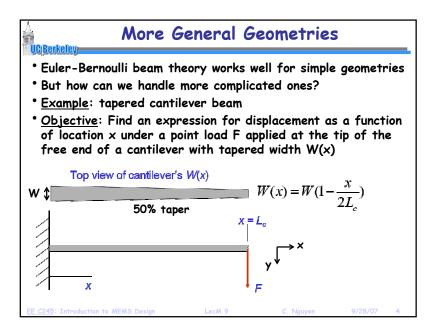
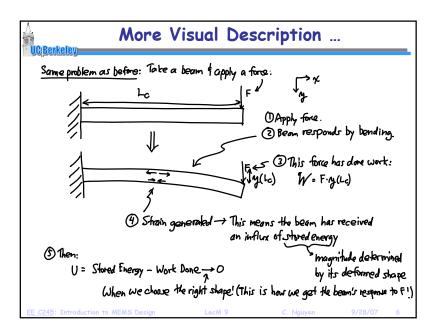
Lec16m1: Energy Methods





Solution: Use Principle of Virtual Work

- In an energy-conserving system (i.e., elastic materials), the energy stored in a body due to the guasi-static (i.e., slow) action of surface and body forces is equal to the work done by these forces ...
- Implication: if we can formulate stored energy as a function of the deformation of a mechanical object, then we can determine how an object responds to a force by determining the shape the object must take in order to minimize the difference U between the stored energy and the work done by the forces:

U = Stored Energy - Work Done

• Key idea: we don't have to reach U = 0 to produce a very useful, approximate analytical result for load-deflection

Fundamentals: Energy Density

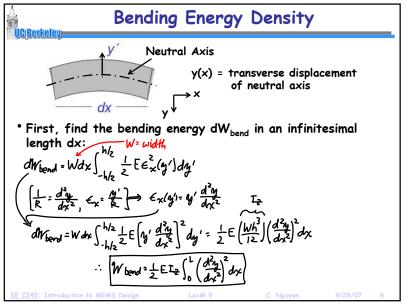
• Strain energy density: $[J/m^3]$ W(a): $\int_0^a da$ — charging a capacitin from ∇ To find work done in straining material street energy on a capacitin with a consistency of the co 120 con just

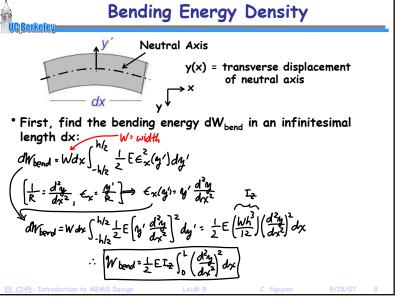
Total strain energy [J]:

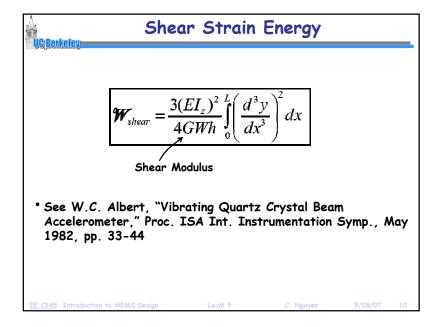
♦ Integrate over all strains (normal and shear)

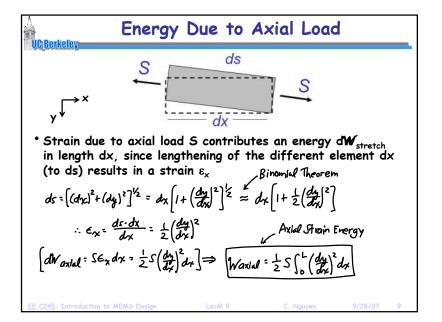
$$W = \iiint \left(\frac{1}{2} E \left(\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2 \right) + \frac{1}{2} G \left(\gamma_{xy}^2 + \gamma_{xz}^2 + \gamma_{yz}^2 \right) \right) dV$$

<u>Lec16m1</u>: Energy Methods



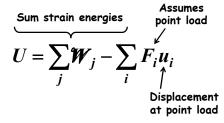






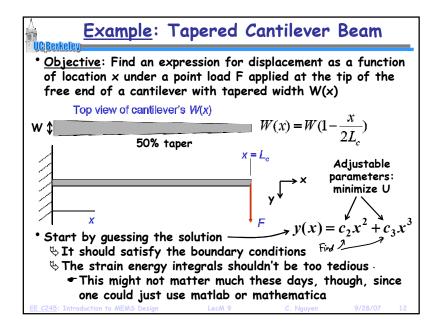
Applying the Principle of Virtual Work

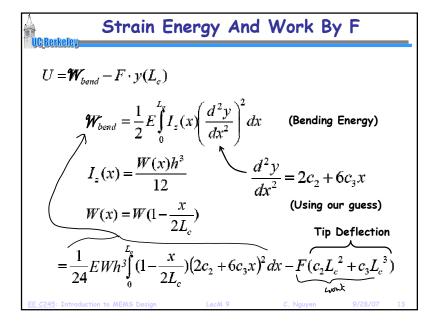
- Basic Procedure:
 - Suess the form of the beam deflection under the applied loads → gherr ng(x,F)
 - ♥ Vary the parameters in the beam deflection function in order to minimize:



- \$ Find minima by simply setting derivatives to zero
- * See Senturia, pg. 244, for a general expression with distrubuted surface loads and body forces

Lec16m1: Energy Methods





Find c_2 and c_3 That Minimize U

- Minimize U \rightarrow basically, find the c₂ and c₃ that brings U closest to zero (which is what it would be if we had guessed correctly)
- The c_2 and c_3 that minimize U are the ones for which the partial derivatives of U with respective to them are zero:

$$\frac{\partial U}{\partial c_2} = 0 \qquad \frac{\partial U}{\partial c_3} = 0$$

• Proceed:

♥ First, evaluate the integral to get an expression for U:

$$U = EWh^{3} \left\{ \frac{5c_{3}^{2}}{16} L_{c}^{3} + \frac{c_{2}c_{3}}{3} L_{c}^{2} + \frac{c_{2}^{2}}{8} L_{c} \right\} - F(c_{2}L_{c}^{2} + c_{3}L_{c}^{3})$$

EE C245: Introduction to MEMS Design L

C. Nguyen

9/28/07 14

Minimize U (cont)

Evaluate the derivatives and set to zero:

$$\frac{\partial U}{\partial c_2} = 0 = \left(\frac{EWh^3}{3}c_3 - F\right)L_c^2 + \left(\frac{EWh^3}{4}c_2\right)L_c$$

$$\frac{\partial U}{\partial c_3} = 0 = \left(\frac{5}{8}EWh^3c_3 - F\right)L_c^3 + \left(\frac{EWh^3}{3}c_2\right)L_c^2$$

 $^{\bullet}$ Solve the simultaneous equations to get c_2 and $c_3\colon$

$$c_2 = \left(\frac{84}{13}\right) \frac{FL_c}{EWh^3} \qquad c_3 = -\left(\frac{24}{13}\right) \frac{F}{EWh^3}$$

EE C245: Introduction to MEMS Design

LecM 9

. Nguyen 9/

Lec16m1: Energy Methods

The Virtual Work-Derived Solution

• And the solution:

$$y(x) = \left(\frac{24F}{13EWh^3}\right) \left(\left(\frac{7}{2}\right)L_o - x\right) x^2$$

• Solve for tip deflection and obtain the spring constant:

$$y(L_c) = \left(\frac{24F}{13EWh^3}\right)\left(\frac{5}{2}\right)L_c^3$$
 $k_c = F/y(L_c) = \left(\frac{13EWh^3}{60L_c^3}\right)$

 Compare with previous solution for constant-width cantilever beam (using Euler theory):

$$y(L_c) = \left(\frac{4F}{EWh^3}\right)L_c^3 \longrightarrow 13\%$$
 smaller than tapered-width case

EE C245: Introduction to MEMS Design

LecM 9

9/28/07

Need a Better Approximation?

- Add more terms to the polynomial
- Add other strain energy terms:
 - \S Shear: more significant as the beam gets shorter
 - & Axial: more significant as deflections become larger
- Both of the above remedies make the math more complex, so encourage the use of math software, such as Mathematica, Matlab, or Maple
- Finite element analysis is really just energy minimization
- If this is the case, then why ever use energy minimization analytically (i.e., by hand)?
 - Analytical expressions, even approximate ones, give insight into parameter dependencies that FEA cannot
 - Scan compare the importance of different terms
 - Should use in tandem with FEA for design

EE C245: Introduction to MEMS Design

LecM 9

C. Nguyen

9/28/07 18

