Lecture 19: Capacitive Transducers

- · Announcements:
- I am traveling today, so this is a recorded video lecture
- Midterm Exam this coming Thursday, March 23,
 3:30-5 p.m., 521 Cory (right here)
- · HW#5 will go online soon, if not already
 - ♥Will be due well after Spring Break
 - The idea is that you need not work on it during Spring Break, but you can if want
- If you haven't already done so, pick up last past midterm solutions in the box outside my office
- · Module 12 on Capacitive Transducers online
- -----
- Reading: Senturia, Chpt. 5, Chpt. 6
- · Lecture Topics:
 - - -Charge Control
 - -Voltage Control
 - ♦ Parallel-Plate Capacitive Transducers
 - -Linearizing Capacitive Actuators
 - -Electrical Stiffness
 - ♦ Electrostatic Comb-Drive
 - -1st Order Analysis
 - -2nd Order Analysis
- -----
- · Last Time:
- · Specified circuit model for mechanical behavior
- Must still develop a circuit model for the electrical-to-mechanical transducer

Find co-energy in terms of voltage,
$$V$$
:

 $2V' = \int_{0}^{V} q(g, V') dV'$, $\int_{0}^{V} \left(\frac{eh}{g}\right) V' dV'$
 $= \frac{1}{2} \left(\frac{eA}{g}\right) V^{2} = \frac{1}{2} CV^{2} V'$ (as expected)

Unitary-Controlled Electrostatic Fora:

 $E_{e} = -\frac{\partial W'(V,g)}{\partial g}$
 $V = const.$
 $= -\frac{1}{2} \left(\frac{eA}{g^{2}}\right) V^{2} = \frac{1}{2} \frac{C}{g} V^{2} = \frac{E}{g}$

depends on gap!

Charge:

 $Q = \frac{\partial W'(V,g)}{\partial V}$
 $Q = const.$

(as expected)

Advantages of Electrostatic Actuators:

- Easy to manufacture in micromachining processes, since conductors and air gaps are all that's needed
 → low cost!
- Energy conserving \rightarrow only parasitic energy loss through I²R losses in conductors and interconnects
- Variety of geometries available that allow tailoring of the relationships between voltage, force, and displacement
- Electrostatic forces can become very large when dimensions shrink → electrostatics scales well!
- Same capacitive structures can be used for both drive and sense of velocity or displacement
- Simplicity of transducer greatly reduces mechanical energy losses, allowing the highest Q's for resonant structures

Disadvantages of Electrostatic Actuators:

- · Nonlinear voltage-to-force transfer function
- Relatively weak compared with other transducers (e.g., piezoelectric), but things get better as dimensions scale