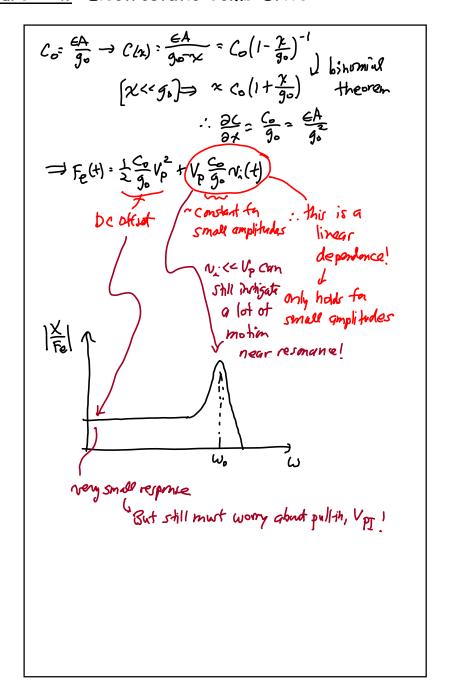
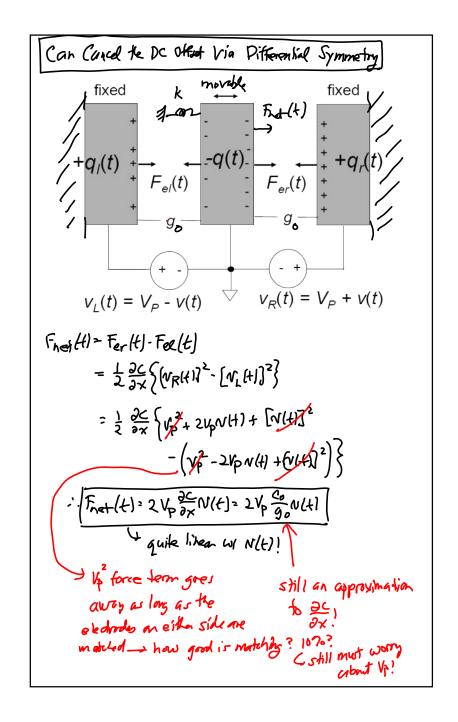
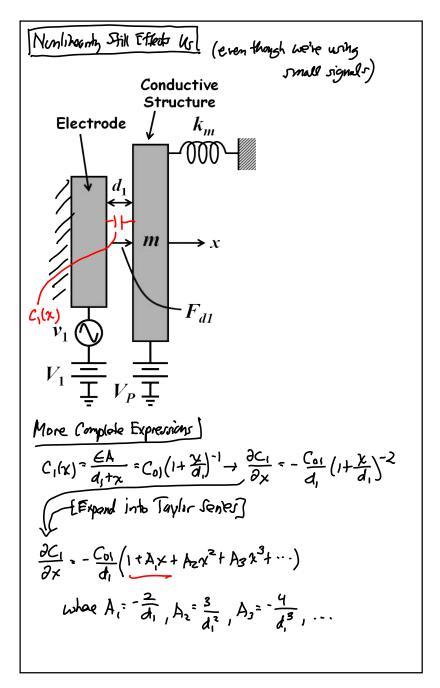
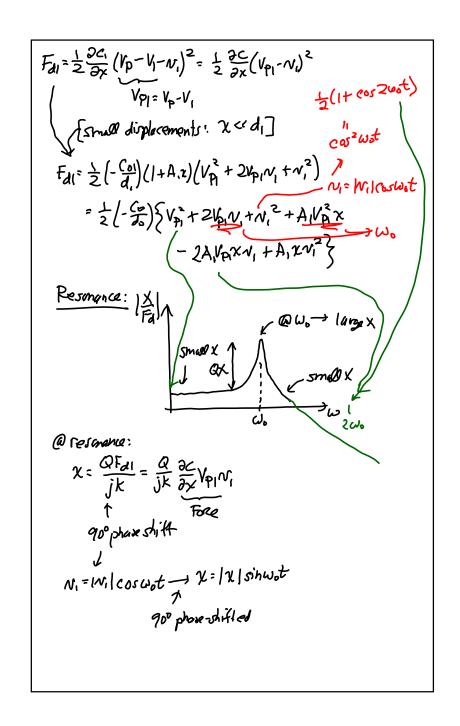

Lecture 21: Electrostatic Comb Drive

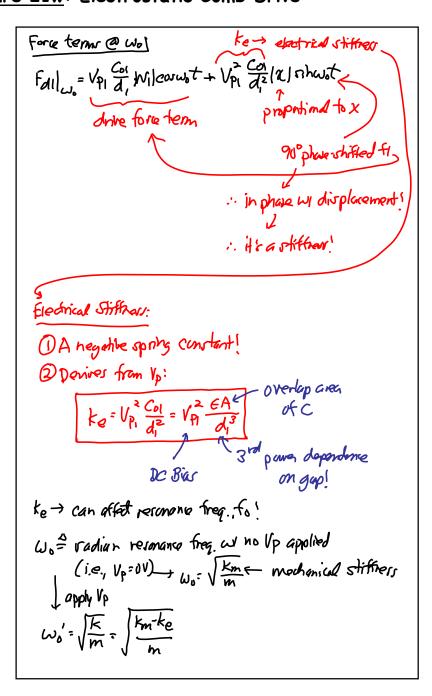

- · Announcements:
- · Module 12 on Capacitive Transducers online
- · HW#5 online and due Thursday, April 13
- · Project Slide Set #1 due Friday, April 14
- -----
- · Reading: Senturia, Chpt. 5, Chpt. 6
- · Lecture Topics:
 - \$ Energy Conserving Transducers
 - -Charge Control
 - -Voltage Control
 - ♦ Parallel-Plate Capacitive Transducers
 - -Linearizing Capacitive Actuators
 - -Electrical Stiffness
 - - -1st Order Analysis
 - -2nd Order Analysis
- -----
- · Last Time:
- · In the midst of deriving electrical stiffness



Disadvantages of Electrostatic Actuators:


- · Nonlinear voltage-to-force transfer function
- Relatively weak compared with other transducers (e.g., piezoelectric), but things get better as dimensions scale





<u>Lecture 21w</u>: Electrostatic Comb Drive

$$\frac{\sqrt{\frac{k_m}{m}}(1-\frac{k_e}{k_m})^{k_2}}{\left(1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}\right)^{l_2}}$$

$$\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}$$

$$\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$


$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}$$

$$\frac{1}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}}{\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}}{\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}}{\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}}{\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{EA}{d_s^3}}{\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}}{\sqrt{\frac{k_m}{k_m}}}\frac{1-\frac{V_{Pl}^2}{\sqrt{\frac{k$$

· Go through Module 12 slides 26-35

· Go through remaining comb-drive slides in Module 12