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Noise Sources
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Thermal Noise

• Thermal Noise in Electronics: (Johnson noise, Nyquist noise)
Produced as a result of the thermally excited random 

motion of free e-’s in a conducting medium
Path of e-’s randomly oriented due to collisions

• Thermal Noise in Mechanics: (Brownian motion noise)
Thermal noise is associated with all dissipative processes 

that couple to the thermal domain
Any damping generates thermal noise, including gas 

damping, internal losses, etc.

• Properties:
Thermal noise is white (i.e., constant w/ frequency)
Proportional to temperature
Not associated with current
Present in any real physical resistor
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• Thermal Noise can be shown to be represented by a series 

voltage generator      or a shunt current generator

Circuit Representation of Thermal Noise
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and where these are spectral densities. 
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Noise in Capacitors and Inductors?

• Resistors generate thermal noise

• Capacitors and inductors are noiseless  why?

•Now, add a resistor:
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Decays to zero

But this violates the laws 
of thermodynamics, which 
require that things be in 
constant motion at finite 
temperature

Need to add a forcing function, like a noise voltage     to keep
the motion going  and this noise source is associated with R
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Back to Determining Sensor 
Resolution
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• Generates drive displacement 
velocity xd to which the Coriolis
force is proportional
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Drive Mode

Sense Mode

Drive-to-Sense Transfer Function
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Gyro Readout Equivalent Circuit
(for a single tine)
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Noise Sources

Gyro Sense Element 
Output Circuit

Signal Conditioning Circuit 
(Transresistance Amplifier)

• Easiest to analyze if all noise sources are summed at a 
common node
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Minimum Detectable Signal (MDS)

•Minimum Detectable Signal (MDS): Input signal level when 
the signal-to-noise ratio (SNR) is equal to unity

• The sensor scale factor is governed by the sensor type

• The effect of noise is best determined via analysis of the 
equivalent circuit for the system

Sensor 
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Circuit 
Gain

Sensor 
Noise

Circuit 
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Circuit
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EEC247B/MEC218: Introduction to MEMS Design LecM 17 C. Nguyen  11/18/08  29

Move Noise Sources to a Common Point

•Move noise sources so that all sum at the input to the 
amplifier circuit (i.e., at the output of the sense element)

• Then, can compare the output of the sensed signal directly 
to the noise at this node to get the MDS
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Equivalent Input-Referred Voltage 
and Current Noise Sources
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Equivalent Input v, i Noise Generators

• Take a noisy 2-port network and represent it by a noiseless 
network with input v and i noise generators that generate 
the same total output noise

• Remarks:
1. Works for linear time-invariant networks
2. veq and ieq are generally correlated (since they are 

derived from the same sources)
3. In many practical circuits, one of veq and ieq dominates, 

which removes the need to address correlation
4. If correlation is important  easier to return to original 

network with internal noise sources

Noisy 
Network
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a) To get      for a two-port:
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b) To get    for a 2-port: 2
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Calculation of    and    (cont)2
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•Once the equivalent input-referred noise generators are 
found, noise calculations become straightforward as long as 
the noise generators can be treated as uncorrelated
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Cases Where Correlation Is Not Important

RS
2
eqv

2
eqi Noiseless

2
eqi Current shorted out!

vS

1) RS = small (ideally = 0 for an ideal voltage source):

 For RS= small,      can be neglected  only      is important!
(Thus, we need not deal with correlation)

2
eqi

2
eqv

• There are two common cases where correlation can be 
ignored:
1. Source resistance Rs is smallsmall compared to input 

resistance Ri  i.e., voltage source input
2. Source resistance Rs is largelarge compared to input 

resistance Ri  i.e., current source input
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Cases Where Correlation Is Not Important
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2) RS = large  (Ideally =  for an ideal current source)

 For RS= large,      can be neglected! 

 only     is important!

(… and again, we need not deal with correlation)
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